期刊文献+

模范畴与余模范畴之间的等价(英文) 被引量:1

EQUIVALENCE BETWEEN CATEGORIES OF MODULES AND CATEGORIES OF COMODULES
下载PDF
导出
摘要 本文研究了环上模范畴与余环上余模范畴. 运用可裂叉与余可分余环的性质, 得到了以上两个范畴等价的一些充分条件, 从而推广了文献[6]中的一些结果. In this article, we consider the categories of modules over rings and categories of comodules over corings. By properties of split forks and coseparable corings, we get some sufficient conditions for the equivalence between above two categories. As a consequence, we generalize some results in [6].
出处 《数学杂志》 CSCD 北大核心 2011年第1期19-27,共9页 Journal of Mathematics
基金 Supported by NNSF of China (10471121 10771183) Sino-German project(GZ310) Agricultural Machinery Bureau Foundation of Jiangsu Province(GXZ08001)
关键词 余矩阵余环 伴随函子 范畴等价 comatrix coring adjoint functor equivalences between categories
  • 相关文献

参考文献9

  • 1Sweedler M. The predual theorem to the Jacobson-Bourbaki theorem[J]. Trans. Amer. Math. Soc., 1975, 213: 391-406.
  • 2Brzezifiski T, Wisbauer R. Corings and comodules[M]. Cambridge: Cambridge University Press, 2003.
  • 3Brzezifiski T, Majid S. Coalgebra bundles[J]. Comm. Math. Phys., 1998, 191: 467-492.
  • 4Brzeziliski T. The structure of corings: Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties[J]. Alg. Rep. Theory, 2002, 5:389 410.
  • 5Kaoutit L. El, Torrecillas J Gomez. Comatrix corings: Galois corings, descent theory, and a structure theorem for cosemisimple corings[J]. Math. Z., 2003, 244: 887-906.
  • 6Caenepeel S, Groot E De, Vercruysse J. Galois theory for comatrix corings: descent theory, morita theory, frobenius and separability properties[J]. Trans. Amer. Math. Soc., 2007, 359(1): 185-226.
  • 7Brzezinski T, GSmez-Torrecillas J. On comatrix corings and bimodules[J]. K-Theory, 2003, 29: 101-115.
  • 8Mac Lane S. Categories for the working mathematician (2nd edition)[M]. Berlin: Springer Verlag, 1997.
  • 9Caenepeel S, Militaru G, Zhu S. Frobenius and separable functors for generalized module categories and nonlinear equations[M]. Lecture Notes in Math., Berlin: Springer Verlag, 2002.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部