期刊文献+

分数阶一般退化微分系统的通解 被引量:4

GENERAL SOLUTION OF GENERAL DEGENERATE DIFFERENTIAL SYSTEMS OF FRACTIONAL ORDER
下载PDF
导出
摘要 本文研究了系数矩阵不是方阵情形的分数阶一般退化微分系统的解.通过定义可解阵对,获得分数阶一般退化微分系统的通解表达式.该结果推广了整数阶退化微分系统和分数阶常微分系统解的相应结论. This article deals with the solution of general degenerate differential systems of fractional order when coefficient matrices are not square. By defining the solvable matrix pair, the expressions of the general solution for ordinary differential system of fractional order are obtained, and which extend the corresponding ones for degenerate differential systems of integer order and linear ordinary differential systems of fractional order.
出处 《数学杂志》 CSCD 北大核心 2011年第1期91-95,共5页 Journal of Mathematics
基金 国家自然科学基金资助项目(10771001) 教育部博士点专项科研基金项目(20093401110001) 安徽省高校省级自然科学研究重大项目(KJ2010ZD02) 安徽省高校省级自然科学研究基金资助项目(KJ2008B152 KJ2009B098) 安徽大学创新团队基金项目
关键词 分数阶积分 分数阶微分 可解阵对 通解 fractional order integral fractional order differential solvable matrix pair general solution
  • 相关文献

参考文献9

  • 1Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M]. New York: Academic Press, 1999.
  • 2Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: A Wiley-Interscience Publication, 1993.
  • 3Bonilla B, Rivero M, Trujillo J J. On systems of linear fractional differential equations with constant coefficients[J]. Applied Math. and Computation, 2007, 187(1): 68 78.
  • 4Samko S G, Kilbas A A. Marichev O I. Fractinal integrals and derivatives, theory and applications[M]. Yverdon: Gordon and Breach, 1993.
  • 5Dai L. Singular control systems[M]. Berlin: Springer-Verlag, 1989.
  • 6Boyarinchev U. Solution of ordinary differential equations of degenerate system (Russian)[M]. Moscow: Science, 1988.
  • 7周宗福.一般退化时滞微分系统解的存在性及通解[J].数学研究,1998,31(4):411-416. 被引量:3
  • 8蒋威,郑祖庥.退化时滞微分系统的通解[J].数学学报(中文版),1999,42(5):769-780. 被引量:17
  • 9蒋威,郑祖庥,徐建华.退化时滞微分系统解的指数估计[J].数学杂志,2001,21(4):425-428. 被引量:2

二级参考文献26

  • 1蒋威,郑祖庥.退化时滞差分系统的通解[J].数学研究,1998,31(1):44-50. 被引量:12
  • 2蒋威.滞后非线性系统的一般化最优控制[J].安徽大学学报(自然科学版),1996,20(2):16-21. 被引量:1
  • 3刘永清 关治洪.测度型脉冲大系统的稳定、镇定与控制.大型动力系统的理论与应用(卷5)[M].广州:华南理工大学出版社,1996..
  • 4蒋威.广义时滞控制系统的输出反馈正常化.安徽大学96学术活动月论文选编[M].合肥:安徽大学出版社,1996.310-313.
  • 5Jiang Wei,Ann Differ Equ,1998年,14卷,2期,204页
  • 6蒋威,数学季刊,1998年,13卷,1期
  • 7蒋威,数学研究,1998年,31卷,1期,44页
  • 8Jiang Wei,Ann Differ Equ,1997年,13卷,2期,146页
  • 9Jiangwe,Math Mech,1997年,18卷,9期,871页
  • 10蒋威,安徽大学学报,1996年,20卷,2期,16页

共引文献18

同被引文献32

  • 1AGARWAL R P,ZHOU Y,HE Y Y.Existence of Fractional Neutral Functional Differential Equations[J].Comput Math Appl,2010,59(3):1095-1100.
  • 2BAI Z B.On Positive Solutions of a Nonlocal Fractional Boundary Value Problem[J].Nonlinear Anal,2010 (72):916-924.
  • 3CHEN F L,ZHOU Y.Attractivity of Fractional Functional Differential Equations[J].Comput Math Appl,2011,62(3):1359-1369.
  • 4BONILLA B,RIVERO M,TRUJILLO J J.On Systems of Linear Fractional Diffrential Equations with Constant Coffients[J].Appl Math Comput,2007,187(1):68-78.
  • 5ZHOU X F,WEI J,HU L G.Controllability of a Fractional Linear Time-invariant Neutral Dynamical System[J].Appl Math Lett,2013(26):418-424.
  • 6FU X.Controllability of Neutral Functional Differential Systems in Abstract Space[J].Appl Math Comput,2003 (141):281-296.
  • 7Miller K. S. , Ross B.. An Introduction to the Fractional Calcu- lus and Fractional Differential Equations [ M ]. John Wiley & Sons, New York, 1993.
  • 8Podlubny I. , Fractional Differential Equations [ M ]. Academic Press, San Diego, 1999.
  • 9Kilbas A. A. , Srivastava, H. M. , Trujillo J. J.. Theory and Applications of Fractional Differential Equations [ M ]. Elsevier Science B. V. , Amsterdam, The Netherlands, 2006.
  • 10Diethelm K.. The Analysis of Fractional Differential Equations [ M ]. Springer - Verlag Berlin, Heidelberg, 2010.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部