期刊文献+

一种基于双子群的改进粒子群优化算法 被引量:8

An Improved Particle Swarm Optimization Algorithm Based on Two-subpopulation
下载PDF
导出
摘要 针对粒子群优化算法易于陷入局部最优解并存在早熟收敛的问题,提出了一种基于双子群的改进粒子群优化算法(TS-IPSO),通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围,借鉴遗传算法的杂交机制,并采用惯性权值的非线性递减策略,加快算法的收敛速度和提高粒子的搜索能力,降低了算法陷入局部极值的风险.实验结果表明该算法较标准PSO算法提高了全局搜索能力和收敛速度,改善了优化性能. Particle Swarm Optimization algorithm easily gets stuck at local optimal solution and shows premature convergence. An improved Particle Swarm Optimization algorithm based on two-subpopulation(TS-IPSO) was pro- posed. The search range of the algorithm was extended through main subpopulation particle swarm and assistant sub- population particle swarm, whose search direction was inversed completely. It also adopts the crossbreeding mecha- nism in genetic algorithm, and uses non-linear inertia weight reduction strategy to accelerate the optimization conver- gence and improve the search capabilities of particles, then effectively decrease the risk of trapping into local optima. Experiment results have shown that the TS-IPSO can greatly improve the global convergence ability and enhance the rate of convergence, compared with SPSO.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期84-88,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(60634020) 湖南省科技计划重点资助项目(2010GK2022)
关键词 收敛性 粒子群优化算法 子群 杂交机制 遗传算法 convergence Particle Swarm Optimization (PSO) algorithm subpopulation crossbreeding genetic arithmetic
  • 相关文献

参考文献9

  • 1KENNEDY J, EBERHART R C. Particle swarm algorithm [C]//Proceedings of the 1995 IEEE International Conference on Neural Networks. New York:IEEE Press, 1995,4:1942- 1948.
  • 2ANGELINE P J. Evolutionary optimization versus particle swarm optimization: philosophy and performance differences [C]//Proceedings of the 7th Annual Conference on Evolu- tionary Programming. Berlin: Springer, 1998 : 601 - 610.
  • 3KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm [C]//Proceedings of IEEE Conference on Systems, Man and Cybernetics. Orlando: IEEE, 1997,4104-4109.
  • 4XIE X F, ZHANG W J, YANG Z L. A dissipative particle swarm optimization[C]//Proc of the IEEE Int Conf on Evolu- tionary Computation. Honolulu: IEEE, 2002 : 1456- 1461.
  • 5LEANDRO DOS SANTOS COELHO. A quantum particle swarm optimizer with chaotic mutation operator[J]. Chaos, Solitons and Fractals,2008,37(5) : 1409- 1418.
  • 6焦巍,刘光斌.动态环境下的双子群PSO算法[J].控制与决策,2009,24(7):1083-1086. 被引量:10
  • 7曹春红,张永坚,李文辉.杂交粒子群算法在工程几何约束求解中的应用[J].仪器仪表学报,2004,25(z3):397-400. 被引量:6
  • 8陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 9王俊伟,汪定伟.一种带有梯度加速的粒子群算法[J].控制与决策,2004,19(11):1298-1300. 被引量:45

二级参考文献36

  • 1单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 2Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995, 4: 1942-1947.
  • 3Hu X H, Russell C Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems[C]. Proe of the IEEE Int Conf on Evolutionary Computation. Honolulu: IEEE Press, 2002: 1666- 1670.
  • 4Carlisle A, Dozier G. Tracking changing extrema with adaptive particle swarm optimizer [ C ]. World Automation Congress. Orlando, 2002: 265-270.
  • 5Blackwell T, Branke J. Multi-swarm optimization in dynamic environments [ C ]. Proc of the 2004 Applications of Evolutionary Computing Workshops. Coimbra: IEEE Press, 2004: 489-500.
  • 6Du W L, Li B. Multi-strategy ensemble particle swarm optimization for dynamic optimization[J].Information Sciences, 2008, 178(15):3096-3109.
  • 7Morrison R W, De Jong K A. A test problem generator for non-stationary environments [C]. Proc of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999:2047-2053.
  • 8[1]Eberhart R., Kennedy J.. A new optimizer using particles swarm theory. Proc. Sixth International Symposium on Micro Machine and Human Science,Nagoya, Japan, 1995,39~43.
  • 9[2]Kennedy J. Eberhart R.. Particle swarm optimization.IEEE International Conference on Neural Networks Perth, Australia, 1995,4:1942~1948.
  • 10[3]V. Tandon. NC end milling optimation using evolutionary computation [J]. International Journal of Machine Tools and Manufacture, 2001,42:595~605.

共引文献363

同被引文献82

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部