期刊文献+

用于虹膜识别的轮廓波特征提取

Contourlet Feature Extraction for Iris Recognition
下载PDF
导出
摘要 为获得高品质的虹膜纹理特征,针对小波变换方向选择性差的局限和虹膜图像纹理丰富的特点,本文提出了一种基于轮廓波(Contourlet)变换的虹膜特征提取方法。首先对预处理后的虹膜图像进行Contourlet分解,然后根据高低频子带所表征的信息,采用不同特征提取策略,提取其低频分量的均值及标准差和不同尺度、不同方向上高频子带变换系数矩阵的能量作为特征值,最后利用支持向量机和汉明距离的方法对CASIAVer1.0和MMU两类虹膜库中的图像进行测试。实验结果表明,同基于Harr小波和离散余弦变换等特征提取方法相比,该方法可获得较好的识别性能。 In view of the limitation of poor direction selectivity about wavelet transform and iris image having rich texture features, an iris feature extraction method? based on contourlet transform for obtaining high quality features is proposed in the paper. First of all, the preprocessed iris image is decomposed by contourlet, then, according to the information that high and low frequency subbands represent, it adopts different extraction ways, both the mean and variance of low frequency subband coefficients and the energy of high frequency subband coefficients are extracted to be the feature vectors. Finally, it carries the test on CASIA Ver1.0 and MMU iris databases with SVMs and Hamming distances. Compared with the feature extraction method? based on the? Harr wavelet and discrete cosine transform, the proposed method can achieve better performance.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第1期77-81,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60472006 60772117 60972136) 广州市科技计划项目(2009J1-C401)
关键词 特征提取 轮廓波变换 虹膜识别 子带能量 feature extraction contourlet transform iris recognition sub-band energy
  • 相关文献

参考文献15

  • 1Daugman J G. New Methods in Iris Recognition [ J ]. IEEE Trans on Systems, Man, and Cybernetics Part B: Cybernet ics, 2007, 37(5):1167-1175.
  • 2Daugman J G. How Iris Recognition Works[J]. IEEE Trans on Circuits and System for Video Technology, 2004,14(1): 21-30.
  • 3Donald M M,Rakshit S, Zhang Dexin. DCT-Based Iris Rec ognition[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29 (4) :586-595.
  • 4Boles W,Boashash B. A Human Identification Technique U- sing Images of the Iris and Wavelet Transform [J]. IEEE Trans on Signal Processing,1998,46(4):1185-1188.
  • 5Ma L,Tan T N, Wang Y H. Local Intensity Variation Anal- ysis for Iris Recognition [J]. Pattern Recognition, 2004,37 (6) :1287-1298.
  • 6王蕴红,朱勇,谭铁牛.基于虹膜识别的身份鉴别[J].自动化学报,2002,28(1):1-10. 被引量:259
  • 7Dorairaj V, Schmid N A, Fahmy G. Performance Evaluation of Iris Based Recognition System Implementing PCA and ICA Encoding Techniques[C]// Proc of SPIE on Biometric Tech- nology for Human Identification Ⅲ, 2005: 51-58.
  • 8Huang Y P, Luo S W, Chen Y E. An Efficient Iris Recogni tion System[C]//Proc of the 1st Int' l Conf on Machine Learning and Cybernetics, 2002:450-454.
  • 9Wildes R P,Asmuth J C,Green G L,et al. A Machine Vi sion System for Iris Recognition[J]. Machine Vision and Ap plications,1996,9(1):1-8.
  • 10DoM N,Vetterli M. The Contourlet Transform: An Effi cient Directional Multiresolution Image Representation [J]. IEEE Trans on Image Processing, 2005, 14 (12): 2091-2106.

二级参考文献19

  • 1袁晓燕,施鹏飞.活体虹膜图像的定位与分割[J].数据采集与处理,2006,21(2):137-141. 被引量:9
  • 2张兵权,王建峰,卢军.一种新的对随机Hough变换改进的检测圆的方法[J].计算机工程与应用,2006,42(18):53-54. 被引量:11
  • 3Smith J R,Chang S F.Automated binary texture feature sets for image retrieval[C]//Proceedings of IEEE International Conference on Acoustics, Speech and signal processing, Atlanta, 1996: 2239-2242.
  • 4Xie Hua,Pierce L E,U laby F T.SAR speckle reduction using wavelet denoising and Markov random field modeling[J].IEEE Transactionson Geoscience and Remote Sensing, 2002,40(10) : 2196-2212.
  • 5Do M N,Vetterli M.Contoudets:a directional multiresolution image representation[C]//IEEE International Conference on Image Processing Rochester, 2002.
  • 6Do M N,Vetterli M.The eontourlet transform:an efficient directional multiresolution image representation[J].IEEE Trans Image Processing, 2005,14(12) :2091-2106.
  • 7Manjunath B S,MaW Y.Texture features for browsing and retrieval of image data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8 ) : 837-842.
  • 8Daugman J. High confidential visual recognition by test of statistical independence [ J ].IEEE Trans on Pattern Analysis and Machine Intelligence, 1993,15 ( 11 ) : 1 148-1 161.
  • 9Daugman J. New methods in iris recognition [ J]. IEEE Trans on Systems, Man, and Cybernetics--Part B : Cybernetics,2007,37 (5) : 1167-1175.
  • 10Daugman J. How iris recognition works [ J ]. IEEE Trans on Circuits and System for Video Technology, 2004. 14 (1) :21-30.

共引文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部