期刊文献+

基于改进的SVM的甲状腺图像检索 被引量:2

A Thyroid Image Retrieval Algorithm Based on Improved SVMs
下载PDF
导出
摘要 针对SVM处理大数据量和区分训练集样本属性的重要性差的问题,我们将SVM和粗糙集结合,构造了基于粗糙集与SVM的图像检索相关反馈算法,将其应用于甲状腺CT图像检索。实验结果表明,改进的SVM分类精度可达到92.53%,相比SVM的分类精度(76.58%)提高了15.95%,进而使检索的查准率和查全率也分别提高到89.53%和29.67%。 In allusion to SVM,s defects of handling large amount of data and distinguishing the importance of the training set,this paper joins the SVM classifier with the rough sets theory, and constructs an improved image feedback retrieval algorithm based on rough sets and SVMs,which are used to retrieve thyroid CT images .The results show that the improved SVM classifier can get 92.53% accuracy which is about 15.95% higher than 76.58% using SVM,and the retrieval of poor accuracy and recallprecision are also increasedr by 89.53% and 29.67%.
出处 《计算机工程与科学》 CSCD 北大核心 2011年第1期127-131,共5页 Computer Engineering & Science
关键词 图像检索 粗糙集 支持向量机 相关反馈 甲状腺CT图像 image retrieval rough sets SVM relevance feedback thyroid CT images
  • 相关文献

参考文献8

  • 1Pawlak Z W. Rough Sets [J]. Int'l Journal of Information and Computer Science, 1982,11 (5) :341-356.
  • 2Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 3Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [J]. Data Mining and Knowledge Diseov cry,1998,2(2):147-149.
  • 4Wang L P. Support Vector Machine:Theory and Application [M]. New York: Springer Verlag, 2005.
  • 5Scholkopf B, Smola A J. Learning with Kernels[M]. Cam- bridge: MIT Press, 2002.
  • 6Rui Y, Huang T S, Ortega M , et al. Relevance Feedback: A Power Tool in Interactive Content Based Image Retrieval [J]. IEEE Trans on Circuits and Syst for Video Tech, 1998, 8(5) :644-655.
  • 7RuiY, Huang T S. A Novel Relevance Feedback Technique in Image Retrieval [C]//Proc of the 7th ACM Int'l Conf on Multimedia( Part 2), 1999:67-70.
  • 8Ishikawa Y, Subramanya R, Faloutsos C. Mindreader:Que- ry Databases Through Multiple Examples [C]//Proc of the 24th Int'l Conf on Very Large Databases,1998:218-229.

同被引文献6

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部