期刊文献+

连续冷却过程中含Cu相在钢中析出行为的研究 被引量:11

STUDY ON PRECIPITATION BEHAVIOR OF PHASES CONTAINING Cu IN THE Cu-BEARING STEEL IN CONTINUOUS COOLING PROCESS
原文传递
导出
摘要 利用热模拟技术研究了一系列含Cu钢在不同冷速下的硬度变化.借助金相和高分辨透射电镜研究了连续冷却过程中的含Cu相析出行为及其对硬度的影响.结果表明:在连续冷却过程中Fe-Cu合金中会发生第二相析出,从而造成硬化.第二相析出为富Cu过渡相,以相让沉淀方式析出,析出行为与冷速和Cu含量有关,当冷却速率为0.1—1℃/s时,随着冷却速率的增加第二相析出物变得更加细小且密度更大,当冷却速率为1℃/s时析出物密度最大.当冷却速率超过1℃/s后,随着冷却速率的增加析出物逐渐减少.当样品以10℃/s冷速冷却时,几乎没有析出物产生.富Cu相析出状况对合金起明显的强化作用.当Cu含量低于1%时,析出现象并不明显. The hardening behavior of five Cu-bearing steels during continuous cooling has been studied with the aid of thermo-simulation technique.Optical microscope(OM) and high resolution transmission electron microscopy(HRTEM) were employed to investigate the influence of cooling rate on the precipitation behavior in these steels and their hardness.The results show that during the continuous cooling the second phase precipitates occur in these steels and cause the precipitation hardening.These precipitates are proved to be Cu-rich phases and formed by the way of inter-phase precipitation.The precipitation behavior and hardening effect could be affected by cooling rate and copper content in these steels.When the steels are cooled at a cooling rate between 0.1—1℃/s,the second phase precipitates become finer and denser with the increase of cooling rate.Only when the cooling rate is 1℃/s the density of the second phase precipitates is the largest.When the cooling rate is quicker than 1℃/s,increasing the cooling rate leads to the precipitates being finer and fewer.When the samples are cooled at a rate of 10℃/s,there are few precipitates in samples.The Cu-rich phase is the main cause to strengthen these steels.It is also found that when the copper content is less than 1%,the precipitation behavior is unobvious.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2010年第12期1488-1494,共7页 Acta Metallurgica Sinica
基金 国家高技术研究发展计划资助项目2008AA03Z501~~
关键词 含Cu钢 连续冷却 相间沉淀 富Cu相 Cu-bearing steel continuous cooling inter-phase precipitation Cu-rich phase
  • 相关文献

参考文献21

  • 1Ozbaysal K, Inal O T. J Mater Sci, 1994; 29:1471.
  • 2Park T W, Kang C Y. ISIJ Int, 2000; 40:49.
  • 3柴锋,徐洲,杨才福,苏航,张永权.含铜时效钢气体保护焊热影响区的组织与性能[J].焊接,2005(9):43-47. 被引量:1
  • 4Yokio T, Takahashi M, Maruyama N, Sugiyama M. J Mater Sci, 2001; 36:5757.
  • 5Ghasemi Banadkouki S S, Dunne D P. ISIJ Int, 2006; 46: 759.
  • 6Dunne D P, Ghasemi Banadkouki S S, Yu D. ISIJ Int, 1996; 36:324.
  • 7王学敏,尚成嘉,杨善武,李闯,贺信莱,周桂峰.用蠕变法研究Cu-Nb钢中的时效行为[J].金属学报,2005,41(12):1256-1260. 被引量:7
  • 8Tompson S W, Colvin D J, Krauss G. Metall Trans, 1990; 21A: 1493.
  • 9Dhua S K, Amitava R, Sarma D S. Mater Sci Eng, 2001; A318:197.
  • 10Miglin M T, Hirth J P, Rosenfield A R. Metall Trans, 1986; 17A: 791.

二级参考文献42

  • 1邱惠中.铝锂合金的发展概况及其应用[J].宇航材料工艺,1993,23(4):38-45. 被引量:43
  • 2黄兰萍,郑子樵,黄永平,钟莉萍.微量Sc对2197铝锂合金组织和力学性能的影响[J].中南大学学报(自然科学版),2005,36(1):20-24. 被引量:6
  • 3小指軍夫.制御庄延·制御冷却-压延による材質製の流れ[M].東京:地人書馆,1997.
  • 4Kamio H,Ueno Y,Tsukada K,et al.钢板在线加速冷却技术的发展[A].钢的加速冷却国际研讨会文集[C].鞍山:鞍钢钢研所,1985.131-135.
  • 5Toshihiko Takeda,Tsutomu Suzuki,Tamotsu Hashimoto.动态加速冷却工艺的开发[A].钢的加速冷却国际研讨会文集[C].鞍山:鞍钢钢研所,1985.86-96.
  • 6Kimura M,Ebeta S,Uemura T.多功能加速冷却系统的开发[A].钢的加速冷却国际研讨会文集[C].鞍山:鞍钢钢研所,1985.189-198.
  • 7上野博則.次世代型制御冷却プロセス「CLC-μ」[J].Nippon Steel Monthly,2006,163:11.
  • 8Akiyama N,Takashima S,Kaji H,et al.在线加速冷却钢板的KCL工艺的开发[A].钢的加速冷却国际研讨会文集[C].鞍山:鞍钢钢研所,1985.245-257.
  • 9Hiroshi Kagechika.Recent Progress and Future Trends in the Research and Development of Steel[J].NKK Technical Review,2003,88:6-9.
  • 10Hiroshi Kagechika.Production and Technology of Iron and Steel in Japan during 2005[J].ISIJ International,2006,46(7):939-958.

共引文献57

同被引文献114

引证文献11

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部