期刊文献+

食管胸中段癌三维适形放疗中呼吸运动导致靶区剂量学变化的研究 被引量:2

Evaluation of respiration-induced dosimetric variance in three-dimensional conformal radiotherapy (3DCRT) for mid-thoracic esophageal carcinoma
原文传递
导出
摘要 目的 测量食管胸中段癌三维适形放疗中因呼吸运动而导致的靶区剂量学变化,为临床医师选择食管胸中段癌靶区外扩范围提供参考.方法 对10例食管胸中段癌患者行三维适形放疗定位时,分别于自由呼吸(FB)、自由吸气末屏气(IBH)及自由呼气末屏气(EBH)3个时相行相同范围的CT定位扫描.3套图像传输到计划系统并按照相同标准进行靶区的勾画.以FB时勾画的靶区制作计划Plan1,将其完全相同地移植到IBH和EBH扫描到CT上,分别得到计划Plan2和Plan3,观察呼吸运动导致的靶区剂量学变化.结果 对于GTV,3个计划仅V100之间有统计学差异(H=6.423,P=0.040).对于CTV,3个计划仅V100、V95之间有统计学差异(F=3.992,P=0.030;H=9.920,P=0.007).对PTV,3个计划仅Dmin、V100、V90之间有统计学差异(F=3.677,P=0.039;F=4.539,P=0.020;H=6.846,P=0.033),脊髓、双肺在3个计划的各指标比较差异均无统计学意义.结论 按照常规标准对食管胸中段癌进行外扩时,呼吸运动导致靶区的受照剂量虽有变化,但遗漏不大,均能达到临床治疗要求. Objective To evaluate the respiration-induced dosimetric variance in 3DCRT for midthoracic esophageal carcinoma, in order to guide the radiation oncologist to choose the expansion margin. Methods Ten patients with mid-thoracic esophageal carcinoma were scanned by multi-spiral CT simulator respectively in free breathing ( FB), breath-hold after normal inspiration and expiration ( IBH and EBH )with the same scanning range. Then the CT images of three series were transferred to the treatment planning system. The target volume was outlined following the same standard. Plan1 was designed in the images of FB and transported completely to the images of IBH and EBH as Plan2 and Plan3 respectively to observe the dosimetric variance in target volume. Results For GTV, there was a statistical difference only in V100 of the three plans ( H = 6.423, P = 0.040 ) and no significant difference was found in other indexes. For CTV, the V100 and V95 were better in Plan1 (F=3.992, P=0.030; H=9.920, P=0.007) and no significant difference was found in other indexes. While ()TV, the Dmin, V100 and V95 was better in Plan1 ( F = 3.677, P = 0.039; F = 4.539, P = 0.020; H = 6.846, P = 0.033 ) and no significant difference was found in other indexes. There were no significant differences in all the indexes for the spinal cord and lung in the three plans. Conclusions The change in dose distribution was not so much with the standard expansion. It can meet the needs of clinical treatment.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2010年第6期714-717,共4页 Chinese Journal of Radiological Medicine and Protection
基金 河北省卫生厅医学科学研究重点课题(07290) 河北省普通高校强势特色学科项目(2005-52)
关键词 食管胸中段癌 三维适形放疗 呼吸运动 剂量变化 Mid-thoracic esophageal carcinoma 3D-conformal radiotherapy Respiratory movement Dosimetry
  • 相关文献

参考文献8

  • 1Hashimoto T,Shirato H,Kato M,et al.Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors.Int J Radiat Oncol Biol Phys,2005,61 (5):1559-1564.
  • 2Zhao KL,Liao Z,Bucci MK,et aL Evaluation of respiratoryinduced target motion for esophageal tumors at the gastroesophageal junction.Radiother Oncol,2007,84 (3):283 -289.
  • 3Lorchel F,Dumas JL,Noel A,et al.Esophageal cancer:determination of internal target volume for conformal radiotherapy.Radiother Oncol,2006,80 (3):327-332.
  • 4Dieleman EM,Senan S,Vincent A,et al.Four-dimensional computed tomosraphic analysis of esophageal mobility during normal respiration.Int J Radiat Oncol Bioi Phys,2007,67(3):775-780.
  • 5Yaremko BP,Guerrero TM,McAleer MF,et al.Determination of respiratory motion for distal esophagus cancer using fourdimensional computed tomography.Int J Radiat Oncol Biol Phys,2008,70(1):145-153.
  • 6霍俊杰,乔学英,曹彦坤,周志国,宋玉芝,迟子锋,刘欣,王静.食管胸中段癌三维适形放疗中呼吸运动导致靶区移位的研究[J].中华放射医学与防护杂志,2010(3):295-298. 被引量:5
  • 7Mechalakos J,Yorke E,Mageras GS,et al.Dosimetric effect of respiratory motion in external beam radi.
  • 8Wang L,Hayes S,Paskalev K,et al.Dosimetric comparison of stereotactic body radiotherapy using 4D CT and multiphase CT images for treatment planning of lung cancer:evaluation of the impact on daily dose coverage.Radiother Oncol,2009,91 (3):314-324.

二级参考文献8

  • 1Hashimoto T, Shirato H, Kato M, et al. Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys, 2005, 61 (5): 1559-1564.
  • 2Zhao KL, Liao Z, Bucci MK, et al. Evaluation of respiratory- induced target motion for esophageal tumors at the gastroesophageal junction. Radiother Oncol, 2007, 84 ( 3 ) : 283 -289.
  • 3Pan CC, Kashani R, Hayman JA, et al. lntra- and inter-fraction esophagus motion in 3D-conformal radiotherapy: implications for ICRU 62 definitions of internal target volume and planning organ at risk volume. Int J Radiat Oncol Biol Phys, 2004,60( St, ppl) : S580-581.
  • 4Lorchel F, Dumas JL, Noel A, et al. Esophageal cancer: determination of internal target volume for conformal radiotherapy. Radiother Oncol, 2006, 80 (3) :327-332.
  • 5Dieleman EM, Senan S, Vincent A, et al. Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. Int J Radiat Oncol Biol Phys, 2007, 67(3) : 775-780.
  • 6Yaremko BP, Guerrero TM, McAleer MF, et al. Determination of respiratory motion for distal esophagus cancer using fourdimensional computed tomography. Int J Radiat Oncol Biol Phys, 2008, 70( 1 ) :145-153.
  • 7Ozhasoglu C, Murphy MJ. Issues in respiratory motion compensation during external-beam radiotherapy. Int J Radiat Oncol Biol Phys, 2002,52(5) :1389-1399.
  • 8Sasidharan S, Allison R, Jenkins T, et al. Interfraction esophagus motion study in image guided radiation therapy (IGRT). lnt J Radiat Oncol Biol Phys, 2005, 63 (Suppl) : S91- S92.

共引文献4

同被引文献53

  • 1Yamashita H, Kida S, Sakmni A, et al. Four-dimensional rreasurement of the displacement of internal fiducial markers during 320- multisliee computed tomography scanning of thoracic esophageal cancer. Int J Radiat Oncol Biol Phys, 2011,79:588-595.
  • 2Hashimoto T, Shirato H, Kato M, et al. Real-time monitoring of a digestive tract marker to reduce adverse effects of moving organs at risk (OAR) in radiotherapy for thoracic and abdominal tumors. Int J Radiat Oncol Biol Phys, 2005, 61:1559-1564.
  • 3Patel AA, Wolfgang JA, Niemierko A, et al. Implications of respiratory motion as measured by four-dimensional computed tomography for radiation treatment planning of esophageal cancer. Med Phys, 2009, 74:290-296.
  • 4Zhao KL, Liao Z, Bucci MK, et al. Evaluation of respiratory induced target motion for esophageal tumors at the gastroesophageal junction. Radiother Oncol, 2007, 84:283-289.
  • 5Hawkins MA, Aitken A, Hansen VN, et al. Set-up errors in radiotherapy for esophageal cancers--is electronic portal imaging or conebeam more accurate? Radiother Oncol, 2011, 98:249-254.
  • 6Chen YJ, Hart C, Liu A, et al. Setup variations in radiotherapy of esophageal cancer: evaluation by daily megavoltage computed tomographic localization. Int J Radiat Oncol Biol Phys, 2007, 68 : 1537-1545.
  • 7Hawkins MA, Aitken A, Hansen VN, et al. Cone beam CF verification for esophageal cancer - impact of volume selected for image registration. Acta Oncol, 2011, 50 : 1183-1190.
  • 8Muijs CT, Beukema JC, Pruim J, et al. A systematic review on the role of FDG-PET/CT in tumor delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol, 2010, 97:165-171.
  • 9Yanagawa M, Tatsumi M, Miyata H, et al. Evaluation of response to neoadjuvant chemotherapy for esophageal cancer: PET response criteria in solid tumors versus response evaluation criteria in solid tumors. J Nucl Med, 2012, 53:872-880.
  • 10Yaremko BP, Guerrero TM, McAleer MF, et al. Determination of respiratory motion for distal esophagus cancer using four- dimensional computed tomography. Int J Radiat Oncol Biol Phys, 2008, 70 : 145-153.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部