期刊文献+

聚(ε-己内酯)/赖氨酸二异氰酸酯基可降解聚氨酯的合成与表征及其电纺丝研究 被引量:4

Synthesis,Characterization and Electrospinning of Biodegradable Polyurethanes Based on Poly(ε-caprolactone) and L-Lysine Diisocynate
原文传递
导出
摘要 首先合成了一种新型的氨基酸类二异氰酸酯,即L-赖氨酸乙酯二异氰酸酯(LDI)。然后,将分子量为2 000的聚(ε-己内酯)二元醇(PCL)与LDI反应生成预聚物,再与扩链剂1,4-丁二醇(BDO)反应合成聚氨酯(PU)。对PU进行了分子量、红外和核磁共振的表征,力学性能测试表明此PU具有良好的机械性能,PU的水解降解和酶促降解实验表明PU具有可降解性。最后,对PU做为组织工程血管支架的电纺丝加工性能进行了研究,电纺丝管状支架的拉伸强度可达8 MPa,缝合强度为12 N,孔隙率为75%,爆破压可达150~170 kPa,毒性较小,有利于细胞生长,符合组织工程血管支架的要求。 A novel diisocyanate,i.e.lysine ethyl ester diisocyanate(LDI),was prepared by the present authors.Poly(ε-caprolactone)(PCL)(Mn=2000) was used for reacting with LDI to form prepolymer,and then the chain was extended with butanediol(BDO) to form polyurethane(PU).PU was characterized by gel permeation chromatography,FTIR and 1H-NMR.Mechanical properties test revealed that PU possesses excellent tensile strength.Hydrolytic degradation and enzymatic degradation of PU films showed that PU is biodegradable.Finally,vascular scaffold of PU was fabricated by electrospinning.Morphological and biomechanical properties of scaffold were examined.The tensile strength was 8MPa,suture retention strength 12N,porosity 75% and burst pressure strength 150-170kPa.Cytotoxicity and cell adhesion showed that PU scaffolds are biocompatible. These results demonstrate that PU vascular scaffolds possess excellent physical strength and biocompatibility and can be developed as substitutes for native blood vessels.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2010年第6期1274-1279,共6页 Journal of Biomedical Engineering
基金 国家863基金资助项目(2007AA021905)
关键词 聚氨酯 聚(ε-己内酯) L-赖氨酸二异氰酸酯 可降解性 电纺丝 Polyurethane(PU) Poly(ε-caprolactone)(PCL) L-lysine diisocynate Biodegradability Electrospinning
  • 相关文献

参考文献10

  • 1RATCATCLIFFE A. Tissue engineering of vascular grafts [J]. Matrix Biology, 2000, 19: 353-357.
  • 2李保强,胡巧玲,方征平,许承威.组织工程用聚氨酯的研究进展[J].高分子通报,2003(2):1-7. 被引量:23
  • 3GUAN J J, FUJIMOTO K L, SACKS M S, et al. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications[J]. Biomatcrials, 2005, 26: 3961-3971.
  • 4KHIL M S, KIM H Y, KIM M S, et al. Natxofibrous mats of poly(trimethylene terephthalate) via electrospinning[J]. Polymer, 2004, 45:295-301.
  • 5LI M Y, MONDRINOS M J, GANDHI M R, et al. Electrospun protein fibers as matrices for tissue engineering[J]. Biomaterials, 2005, 26: 5999-6008.
  • 6ROCKWOOD D N, WOODHOUSE K A. Characterization of biodegradable polyurethane microfibers for tissue engineering [J]. J Biomater Sci: Polymer Edn, 2007, 18: 743-758.
  • 7NOWICK J S, POWELL N A, NGUYEN T M, et al. An improved method for the synthesis of enantiomerically pure amino acid ester isocyanates[J].J Org Chem, 1992, 57:7364- 7366.
  • 8GUELCHER S A, GALLAGHER K M, DIDIER J E, et ah Synthesis of bioeompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders[J]. Aeta Biomaterialia, 2005, 1:471-484.
  • 9DARWIS D, MITOMO H, ENJOJI T, ct al. Enzymatic degradation of radiation crosslinkcd poly (ε-caprolactone) [J].Polymer Degradation and Stability, 1998, 62: 259-265.
  • 10BILLIAR K, MURRAY J, LAUDE D, et al. Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa[J].J Biomed Mater Res, 2001, 56: 101-108.

二级参考文献2

共引文献22

同被引文献18

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部