期刊文献+

求解大规模优化问题的有限内存SR-1方法

A Limited Memory Symmetric Rank——one Method for Large Scale Optimization
下载PDF
导出
摘要 给出了求解大规模优化问题的有限内存SR-1方法,与传统的有限内存BFGS方法相比较,该方法能进一步的节省计算机的内存,更适合用于大规模的优化问题。 In the paper,a limited memory symmetric rank-one method for large scale optimization is given.Compared to limited memory BFGS,the memory of the computer is saved,and the method in the paper is fit for large scale optimization.
作者 吴淦洲
出处 《广东石油化工学院学报》 2010年第6期71-73,共3页 Journal of Guangdong University of Petrochemical Technology
关键词 大规模优化问题 有限内存方法 对称秩一校正公式 large scale optimization the limited memory method symmetric rank-one method
  • 相关文献

参考文献5

  • 1Powell M J D.Some properties of the variable metric algorithm[].Numerical Methods for Nonlinear Optimization.1972
  • 2Broyden C G.Quasi-Newton methods and their application to function minimization[].Mathematics of Computation.1967
  • 3Liu DC,Nocedal J.On the limited memory BFGS method for large scale optimization[].Mathematical Programming.1989
  • 4Byrd RH,Nocedal J,Schnabel RB.Representations of quasi-Newton matrices and their use in limited memory methods[].Mathematical Programming.1994
  • 5Bongartz,I.,Conn,A. R.,Gould,N.,Toint,Ph. L. CUTE: Constrained and unconstrained testing environment . 1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部