期刊文献+

置换流水车间调度粒子群算法与参数设置分析 被引量:2

Particle Swarm Optimization and Parameter Setting Analysis for Permutation Flow Shop Scheduling Problem
下载PDF
导出
摘要 针对置换流水车间调度问题,在介绍了基于粒子位置次序的粒子群算法二维编码方法之后,采用惯性权重线性递减粒子群算法对置换流水车间调度问题进行了优化.在此基础上,对粒子群算法的相关参数设置问题展开分析,主要针对惯性权重的取值、粒子群种群数量、粒子位置和速度的初始化以及粒子位置和速度的限制范围等几个方面展开实验研究.粒子群算法的参数设置分析将有助于提高求解置换流水车间调度问题的粒子群算法优化效率和优化性能. After the two-dimension encoding based on the particle position sequence of particle swarm optimization algorithm for permutation flow shop scheduling is introduced,the linearly decreasing inertia weight particle swarm optimization is employed to optimize the permutation flow shop scheduling problem.Moreover,parameter setting of particle swarm optimization algorithm for the permutation flow shop scheduling is analyzed through the experiment and the parameters which comprising of the inertia weigh,swarm population,initialization of the particle and limitation of the particle.The analysis of parameter setting can improve the optimization efficiency and performance of particle swarm optimization for the permutation flow shop scheduling.
出处 《武汉理工大学学报(交通科学与工程版)》 2010年第6期1129-1132,1137,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(批准号:70801047) 中国博士后科研基金项目(批准号:20090450769) 湖北省教育厅科学技术研究计划优秀中青年人才项目(批准号:Q20101115)资助
关键词 粒子群算法 置换流水车间 调度 参数设置 实验分析 particle swarm optimization algorithm permutation flow shop scheduling parameter setting empirical analysis
  • 相关文献

参考文献7

  • 1Brucker P.Scheduling algorithm[M].The fifth edition.Berlin:Springer-Verlag,2007.
  • 2Kennedy J,Eberhart R C.Particle swarm optimization[C] //Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995:1942-1948.
  • 3Eberhart R C,Shi Y H.Particle swarm optimization:development,applications and resources[C] //Proceedings of 2001 Congress on Evolutionary Computation,Seoul,korea,2001,81-86.
  • 4张慧霞,张焱,高兴宝.求解作业车间调度问题的粒子群优化算法[J].河南科技大学学报(自然科学版),2008,29(6):49-52. 被引量:10
  • 5Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization[C] //Proceeding of the 7th Annual Conference on Evolutionary Programming.Washington DC,1998,591-600.
  • 6Shi Y H,Eberhart R C.Empirical study of particle swarm optimization[C] //Proceedings of 1999 Congress on Evolutionary Computation,Washington,D.C.USA,Piscataway,NJ:IEEE Service Center,1999,1945-1949.
  • 7Ei-Gallad A,Ei-Hawary M,Sallam A,et al.Enhancing the particle swarm optimizer via proper parameters selection[C] //Proceedings of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering,2002,792-797.

二级参考文献12

  • 1陈黎卿,郑泉,王继先.基于遗传算法的独立悬架与转向系统匹配优化设计[J].河南科技大学学报(自然科学版),2007,28(4):14-17. 被引量:5
  • 2Van Laarhoven P J M, Arts Ehl, Lenstra J K. Job-shop Scheduling by SimuLated Annealing[ J ]. Operations Research, 1992, 40(1) :113 - 125.
  • 3Dell' s Amieo M, M Turbian. Applying Tabu Search to the Job Shop Scheduling Problem[ J]. Annual Operations Research, 1993,40:231 -252.
  • 4Wang L Zheng D-Z. An Effective Hybrid Optimization Strategy for Job-shop Scheduling Problems [ J]. Computers & Operations Research ,2001,28:585 - 596.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization [ C ]//Proceedings of IEEE International Conference on Neutral Networks. 1995 : 1942 - 1948.
  • 6Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory[ C ]//The 6th International Symposium on Micro Machine and Human Science. 1995:39 -43.
  • 7Shi Y H, Eberhart R C. A Modified Particle Swarm Optimization [ C ]//IEEE International Conference on Evolutionary Computation. 1998:69 - 73.
  • 8Xia Wejun, Wu Zhiming, Zhang Wei, et al. A New Hybrid Optimization Algorithm for the Job-shop Scheduling Problem [ C ]//Proceeding of the 2004 American Control Conference. 2004.
  • 9Price K. Differential Evolution:A Fast and Simple Numerical Optimizer[ C]//Biennial Conf of the North American Fuzzy Information Processing Society. 1996:524 -527.
  • 10Rui X,Ganesh K V ,Donald C W. Modeling of Gene Regulatory Networks with Hybrid Differential Evolution and Particle Swarm Optimization [ J]. Neural Networks ,2007,20( 8 ) :917 - 927.

共引文献9

同被引文献23

  • 1GAREY M R,JOHNSON D S,SETHI R.The complexity of flow-shop and job shop cheduling[J].Mathematics of Operations Re-search,1976,1(2):117-129.
  • 2EBERHART R C,KENNEDY J.A new optimizer using particleswarm theory[EB/OL].[2011-05-01].http://webmining.spd.louisville.edu/Websites/COMB-OPT/FINAL-PAPERS/SwarmsPa-per.pdf.
  • 3SUN KAI,YANG GEN-KE.An effective hybrid optimization algo-rithm for the flow shop scheduling problem[C]//Proceedings of the2006 IEEE International Conference on Information Acquisition.[S.l.]:IEEE,2006:1234-1238.
  • 4WANG LING,ZHENG DA-ZHONG.A modified evolutionary pro-gramming for flow shop scheduling[J].International Journal of Ad-vanced Manufacturing Technology,2003,22:522-527.
  • 5CARLIER J.Ordonnancements a contraintes disjonctives[J].Oper-ations Research,1978,12:333-351.
  • 6REEVES C R.A genetic algorithms for flowshop sequencing[J].Computers&Operation Research,1955,22(1):5-13.
  • 7GAREY M R, JOHNSON D S, SETHI R. The complexity of flow shop and job shop scheduling[ J]. Mathematics of Operations Research, 1976,1 (2) :117-129.
  • 8EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory [ C ]//Proc of the 6th International Symposium on Micro Machine and Human Science. 1995:39-43.
  • 9SUN Kai, YANG Gen-ke. An effective hybrid optimization algorithm for the flow shop scheduling problem [ C ]//Proc of IEEE International Conference on Information Acquisition. 2006 : 1234-1238.
  • 10LIU Hong-cheng, GAO Liang, PAN Quan-ke. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem [ J ]. Expert Systems with Applications, 2011,38 ( 4 ) : 4348 - 4360.

引证文献2

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部