期刊文献+

抑制性神经元作用下相位神经编码的神经动力学分析 被引量:1

Neurodynamics analysis on phase neural coding in the presence of inhibitory neurons
下载PDF
导出
摘要 在考虑抑制性神经元作用的情况下,利用随机相变动力学理论对由神经振子群组成的神经网络进行相位编码的分析研究。建立一种抑制性神经元耦合作用下的随机非线性相变动力学模型,并依据所建立的模型对其自发活动以及在刺激作用下的动态演化过程进行数值分析。研究结果表明网络中抑制性神经元的存在能够降低兴奋性神经振子集群的数密度的幅值,并且抑制性神经元耦合系数的增大能够控制兴奋性神经振子集群的变化趋势。在刺激条件下,随着刺激强度的变化能够改变神经振子的发放频率。还考察了不同刺激情况下的相位编码的数密度演化。 The phase coding in the neural network composed of neural oscillator population was studied in accordance with the theory of stochastic phase dynamics in the presence of inhibitory neurons.A stochastic nonlinear phase dynamic model was presented under coupling action of inhibitory neurons,and the dynamic evolution process and spontaneous behavior were numerically analyzed by use of simulation according to the model.The results indicate that inhibitory neurons can reduce the amplitude of average number density in excitatory neural oscillator population,and the trend of synchronization motion of excitatory neural oscillator population can be controlled through increasing coupling coefficient of inhibitory neurons.The firing density of population of neural oscillator and the evolution of average number density were investigated by varying the stimulation intensity.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第12期1-7,17,共8页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10672057 10872068) 中央高校基本科研业业费专项基金资助
关键词 兴奋性神经振子集群 抑制性神经振子集群 平均数密度 FPK方程 相位神经编码 excitatory neural oscillator population inhibitory neural oscillator population average number density FPK equation phase neural coding
  • 相关文献

参考文献24

  • 1Alexander B N,David F R,Andrew D L,et al.Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters[J].Physical Review E.2007,76:021908.
  • 2Wagatsuma H,Yamaguchi Y.Disambiguation of multiple sequence learning by theta phase coding[J] ,The Brain & Neural Networks,2005,12:17-31.
  • 3Yamaguchi Y,Aota Y,Sato N,et al.Synchronization of neural oscillations as a possible mechanism underlying episodic memory:A study of theta rhythm in the hippocampus[J] ,Journal of Integrative Neuroscience,2004,3(2):143-157.
  • 4Tass P A.Stimulus-locked transient phase dynamics,synchronization and desynchronization of two oscillators[J].Europhys.Lett.2003,59:199-205.
  • 5Tass P A.Stochastic phase resetting of stimulus-locked responses of two coupled oscillators:transient response clustering,synchronization and desynchronization[J].Chaos,2003,13:364-376.
  • 6Wang Rubin,Zhang Zhikang.Nonlinear stochastic models of neurons activities[J].Neurocomputing,2003,51:401-411.
  • 7Jiao Xianfa,Wang Rubin.Synchronous firing patterns of neuronal population with excitory and Inhibitory connections[J].International Journal of Nonlinear Mechanics,2010,45(6):647-651.
  • 8Wang Rubin,Zhang Zhikang,Yu Wei,et al.An evolution model on the set of the populations of neurons[J].Int.J.Nonlinear Science and Numerical Simulation,2003,4(3):2 03-208.
  • 9Tass P A.Phase resetting in medicine and biology[M].Springer-Verlag,Berlin,1999.
  • 10Tass P A,Fieseler T,Dammers J,et al.Synchronization tomography:a method for three-dimensional localization of phase synchronized neuronal populations in the Human Brain using magnetoencephalography[J].Physics Review Letters,2003,90:088101.

二级参考文献3

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部