期刊文献+

视觉注意驱动的基于混沌分析的运动检测方法 被引量:1

Motion detection driven by visual attention mechanism applying chaos analysis method
下载PDF
导出
摘要 提出了视觉注意驱动的基于混沌分析的运动检测方法(MDSA)。MDSA首先基于视觉注意机制提取图像的显著区域,而后对显著区域进行混沌分析以检测运动目标。算法技术路线为:首先根据场景图像提取多种视觉敏感的底层图像特征;然后根据特征综合理论将这些特征融合起来得到一幅反映场景图像中各个位置视觉显著性的显著图;而后对显著性水平最高的图像位置所在的显著区域运用混沌分析的方法进行运动检测;根据邻近优先和返回抑制原则提取下一最显著区域并进行运动检测,直至遍历所有的显著区域。本文对传统的显著区域提取方法进行了改进以减少计算量:以邻域标准差代替center-surround算子评估图像各位置的局部显著度,采用显著点聚类的方法代替尺度显著性准则提取显著区域;混沌分析首先判断各显著区域的联合直方图(JH)是否呈现混沌特征,而后依据分维数以一固定阈值对存在混沌的JH中各散点进行分类,最后将分类结果对应到显著区域从而实现运动分割。MDSA具有较好的运动分割效果和抗噪性能,对比实验和算法开销分析证明MDSA优于基于马塞克的运动检测方法(MDM)。 A motion detection technology driven by visual attention mechanism applying chaos analysis method is proposed in this paper.The method firstly extracts salient regions of the scene image based on visual attention mechanism,and then detects motion objects with chaos analysis method on salient regions.The technical route of the motion detection technology driven by visual attention mechanism applying chaos analysis method is as follows;firstly,bottom image features that are sensitive to vision are extracted from scene image;secondly,salient map which reflects the visual saliency of each scene location is obtained via incorporating these image features according to the feature integration theory;and then,motion detection is done with the chaos analysis method on the salient image region which contains the most salient scene image location;finally,the next salient image region with the strongest saliency in the residual ones is detected according to the proximity criterion and the inhibition-of-return criterion;the process given above is repeated till having detected motion objects on all scene image regions.To decrease computational complexity,the traditional method of extracting salient image region is improved as follows:local standard deviation operator replaces center-surround operator to estimate local saliency of each image location and salient pixel clustering method replaces scale saliency rule to extract salient regions ia our method.The chaos analysis method firstly estimates whether the joint histogram puts up chaotic characteristics,then classifies all scatters of the joint histogram that puts up chaotic characteristics by fractal dimension with a fixed threshold,and finally corresponds the classified result to salient regions to segment motion objects.Motion detection technology driven by visual attention mechanism is effective and robust.The contrast experiments and algorithm cost analysis are done which show that our method excels the motion detection method based on mosaics in segmentation effect and velocity.
出处 《信号处理》 CSCD 北大核心 2010年第12期1825-1832,共8页 Journal of Signal Processing
关键词 运动检测 视觉注意 混沌分析 联合直方图 Motion detection Visual attention Chaos analysis Joint histogram
  • 相关文献

参考文献10

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2B.Li,Q.Meng and H.Holstein,et al.Articulated motion reconstruction from feature points[J].Pattern Recognition,2008,41(1):418-431.
  • 3Hart W and Brady M,et al.Motion detection from a moving observer using pure feature matching[J].Image and vision computing,1995,13(9):695~703.
  • 4Michael E.Farmer,et al.A chaos theoretic analysis of motion and illumination in video sequences[J].Journal of Multimedia,2007,2(2):53-64.
  • 5Michael E.Farmer,et al.Quantization effects in applying chaos theory to the detection of motion in image sequences[C],2009 16th International Conference on Digital Signal Processing,Santorini,Greece.
  • 6Itti L,Koch C and Niebur E,et al.A model of saliencybased visual attention for rapid scene analysis[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1998,20(11):1254-1259.
  • 7Paul L.Rosin,et al.A simple method for detecting salient regions[J].Pattern Recognition,2009,42(11):2363-2371.
  • 8Ionut Pirnog,Cristina Oproa and Constantin Paleologu,et al.Image Content Extraction Using a Bottom-Up Visual Attention Model[C],2009 Third International Conference on Digital Society,Cancan,Mexico,2009,300-303.
  • 9CAVIAR project/IST 2001 37540.http://homepages.inf.ed.ac.uk/rbf/CAVIAR/,2009.
  • 10Wollborn M and Mech R,et al.Refined procedure for objective evaluation of video object segmentation algorithms[R],Doc.ISO/IEC JTCl/SC29/WG11M3448,March 1998.

二级参考文献13

  • 1Bourque E, Dudek G, Ciaravola P. Robotic sightseeing: A method for automatically creating virtual environments. In: Giralt G, ed.Proc. of the IEEE Conf. on Robotics and Automation. Leuven: IEEE Press, 1998. 3186~3191.
  • 2Kadir T, Brady M. Saliency, scale and image description. International Journal of Computer Vision, 2001,45(2):83-105.
  • 3Gesu VD, Valenti C, Strinati L. Local operators to detect regions of interest. Pattern Recognition Letters, 1997,18(11-13):1077-1081.
  • 4Wai WYK, Tsotsos JK. Directing attention to onset and offset of image events for eye-head movement control. In: Huang T, ed.Proc. of the Int'l Association for Pattern Recognition Workshop on Visual Behaviors. Seattle: IEEE Press, 1994. 79~84.
  • 5Stentiford FWM. An evolutionary programming approach to the simulation of visual attention. In: Kim JH, ed. Proc. of the IEEE Congress on Evolutionary Computation. Seoul: IEEE Press, 2001. 851-858.
  • 6Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
  • 7Itti L, Koch C. Computational modeling of visual attention. Nature Reviews Neuroscience, 2001,2(3):194-230.
  • 8Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging,2001,10(1):161-169.
  • 9Yee H, Pattanaik SN, Greenberg DP. Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments. ACM Trans. on Computer Graphics, 2001,20(1):39-65.
  • 10Boccignone G, Ferraro M, Caelli T. Generalized spatio-chromatic diffusion. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(10): 1298-1309.

共引文献52

同被引文献12

  • 1Fritz J B,Elhilali M,David S V,and Shamma S A.Auditory attention focusing the search light on sound[J].Current Opinion in Neurobiology,2007,1 7(4):437-455.
  • 2Elhilali M,Xiang J,Shamma S A,and Simon J Z.Interaction between attention and bottom-up saliency mediates the representation of foreground and background in an auditory scene[J].PLoS Biology,2009,7(6):e1000129.
  • 3Alain C and Amott S R.Selectively attending to auditory objects[J].Frontiers in Bioscience,2000,5:d202-212.
  • 4Kalinli O and Narayanan S.Prominence detection using auditory attention cues and task-dependent high level information[J].IEEE Transactions on Audio,Speech,and Language Processing,2009,17 (5):1009-1024.
  • 5Kalinli O,Sundaram S and Narayanan S.Saliency-Driven Unstructured Acoustic Scene Classification Using Latent Perceptual Indexing[J].IEEE International Workshop on Multimedia Signal Processing,2009:1-6.
  • 6Itti L,Koch C and Niebur E.A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1988,20(11):1254-1259.
  • 7Kayser C,Petkov C,Lippert M and Logothetis N K.Mechanisms for allocating auditory attention:An auditory saliency mnap[J].Current Biology,2005,15(21):1943-1947.
  • 8Itti L and Koch C.Computational modelling of visual attention[J].Nature Reviews Neuroscience,2001,2 (3):194-203.
  • 9Kalinli O and Narayanan S.A saliency-based auditory attention model with apphcations to unsupervised prominent syllable detection in speech[J].Proc.Interspeech,2007:1941-1944.
  • 10Duangudom V and Anderson D V.Using auditory sahency to understand complex auditory scenes[J].in Proceeding of the 15th European Signal Processing Conference (EUSIPCO2007),2007:1206-1210.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部