摘要
设D是一个n阶强连通的有向图.D的逆度定义为,R(D)=∑v∈V(D)max{1/(d+(v)),1/(d-(v))},其中,d+(v)与d-(v)是v的出度和入度.证明了,如果R(D)<2+2/(δ(δ+1))+(n-2δ)/((n-δ-2)(n-δ-1)),其中,δ(D)=min{d+(v),d-(v),v∈V(D)},是最小度,那么,D是极大弧连通的.同时,给出了一个二部图的类似结果.
Let D be an n-order strongly connected digraphs.The inverse degree of D is defined by R(D)=∑v∈V(D)max{1/(d^+(v)),1/(d^-(v))} where d^+(v) and d^-(v) is in-degree and out-degree of v respectively.If R(D)〈2+2/δ(δ+1)+n-2δ/(n-δ-2)(n-δ-1) is testified where δ(D)=min{d^+(v),d^-(v),v∈V(D)} is the minimum degree,then D is maximally arc-connected.Analogous results for bipartite digraphs were given.
出处
《成都大学学报(自然科学版)》
2010年第4期301-303,314,共4页
Journal of Chengdu University(Natural Science Edition)
关键词
有向图
逆度
极大弧连通
digraphs
inverse degree
maximally edge connected