期刊文献+

解动态约束规划问题的差分进化算法 被引量:1

Differential Evolution Algorithm for Solving Dynamic Constrained Programming Problems
下载PDF
导出
摘要 动态约束规划问题求解的困难在于如何处理问题的约束及时间(环境)变量.本文给出了求解一类定义在自然数集上的动态约束规划问题的差分进化算法,该方法借助于问题的约束条件设计了一种新的适应度函数及选择算子、同时给出了一种带一维不精确局部搜索的变异算子极大地增强了群体的多样性、提高了算法跳出局部最优的能力.数值试验表明,该算法性能稳定性较好,收敛速度较快,全局搜索能力较强,其对动态非线性约束规划问题求解是有效的. The difficult to solve dynamic constrainted programming problems is how to do with the constraint and the time(invironment) variance.In this paper,a new differentinal evolution algorithm for solving a class of constrained programming problem defined in natural numbers set is proposed.First,a new fitness fuction and selection operator based on the constraint conditions of dynamic constrainted programming problem is given.Futhermore,a new mutation operator with one-dimensional inexact local search is designed.Based on these,the diversity of population is improved and enabling the algorithm to jump over any local minimum trap.The simulations show that the algorithm is reliable,fast and robust in global optimization,and the proposed algorithm is effective for solving the dynamic constrainted programming problems.
作者 刘淳安
出处 《昆明理工大学学报(理工版)》 CAS 北大核心 2010年第6期114-118,共5页 Journal of Kunming University of Science and Technology(Natural Science Edition)
基金 陕西省教育厅科学研究计划项目(09JK329) 陕西省自然科学基础研究计划项目(2009JM1013) 宝鸡文理学院重点科研计划项目(ZK0840)
关键词 动态规划 约束规划 差分进化 约束处理 dynamic programming constrained programming differentinal evolution deal with the constraints
  • 相关文献

参考文献8

  • 1Yixin Chen, Benjamin W W. Calculus of variations in discrete space for constrained nonlinear dynamic optimization [ C ]. Proceedings of the 14th International Conference on Tools with Artificial Intelligence (ICTAI' 02), Piscatway, IEEE Press, 2002,1 - 8.
  • 2Chun - an Liu, Yuping Wang. New muhiobjective PSO algorithm for nonlinear constrained programming problems [ C ]. Proceedings of the 2007 International Conference on Intelligent Systems and Knowledge Engineering,2007,1439 - 1442.
  • 3Salman A, Engelbrecht A P, Omran M G H. Empirical analysis of self- adaptive differential evolution [ J ]. European Journal of Operational Research, 2007,183 (2) : 785 - 804.
  • 4吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 5Storn R, Price K. Differentinal evolution - a simple and efficient heuristic for global optimization over continuous space,Technical Report TR - 95 - 012 [ R]. Berkeley : Internatinal Computer Science Institute, 1995.
  • 6Brest J, Greiner S, Bosovic B, et al. Self - adapting control parameters in differential evolution : A comparative study on numerical benchmark problems [J]. IEEE Transactions on Evolutionary Computation ,2006,10 (6) : 646 -657.
  • 7Becerra R L, Coello C A C. Cultured differential evolution for constrained optimization [J].Computation Methods in Applied Mechanics and Engineering ,2006 , 195 (33/34/35/36) :4303 - 4322.
  • 8J. Branke, H. Schmeck. Designing evolutionary algorithms for dynamic optimization problems [ C ]. Proc. of the Theory and Application of Evolutionary Computation, Germany, Berlin, Springer - Verlag, 2002:239 - 262.

二级参考文献8

  • 1周永华,张旭,毛宗源.采用不可微精确罚函数的约束优化演化算法[J].小型微型计算机系统,2004,25(8):1464-1467. 被引量:8
  • 2Michalewicz Z,Schoenauer M.Evolutionary algorithms for constrained parameter optimization problems[J].Evolutionary Computation,1996,4(1):1-32.
  • 3Min-Jea Tahk,Byung-Chan Sun.Coevolutionary augmented lagrangian methods for constrained optimization[J].IEEE Trans on Evolutionary Computation,2000,4(2):114-124.
  • 4Parsopoulos K E,Vrahatis M N.Particle swarm optimization method for constrained optimization problems[J].Intelligent Technologies-Theory and Applications:New Trends in Intelligent Technologies,Amsterdam,2002,214-220.
  • 5Price K.Differential evolution a fast and simple numerical optimizer[C]//1996 Biennial Conference of the North American Fuzzy Information Processing Society.New York,1996.524-527.
  • 6Price K.Differential evolution vs.the functions of the 2nd ICEO[C]//IEEE International Conference on Evolutionary Computation.Indianapolis,1997.153-157.
  • 7Rainer S,Price K.Differential evolution -a simple and efficient heuristic for global optimization over Continuous Spaces[J].J of Global Optimization,1997,11(4):341-359.
  • 8Lin Y C,Hwang K S,Wang F S.Hybrid differential evolution with multiplier updating method for nonlinear constrained optimization problems[C]//Proc IEEE Comput Intelligence Conf.Honolulu,2002,872-877.

共引文献26

同被引文献11

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:22
  • 3Jin Y C, Branke J.Evolutionary optimization in uncertain environments--a survey[J].IEEE Transactions on Evolu- tionary Computation, 2005,9 (3) : 134-137.
  • 4Rohlfshagen P, Lehre P K, Yao X.Dynamic evolutionary optimization: an analysis of frequency and magnitude of change[C]//Pro of the 2009 Genetic and Evolutionary Com- putation Conference,2009: 1713-1720.
  • 5Mei Y, Tang K, Yao X.Capacitated arc routing problem in uncertain environments[C]//Proc of the 2010 IEEE Congress on Evolutionary Computation(CEC2010),Bar- celona, Spain, 2010: 1400-1407.
  • 6Nguyen T, Yao X.Benchmarking and solving dynamic con- strained problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation CEC2009.Trondheim, Nor- way: IEEE Press, 2009 : 690-697.
  • 7Soylu B,Koksalan M.A favorable weight-based evolution- ary algorithm for multiple criteria problems[J].IEEE Trans- actions on Evolutionary Computation, 2010, 14 (2) : 191-207.
  • 8Leung Y, Wang Y.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Transactions on Evolutionary Computation, 2001,5 ( 1 ) : 40-53.
  • 9Deb K,Bhaskara U R N,Karthik S.Dynamic multiobjec- tive optimization and decision-making using modified NSGA-II-a case on hydro-thermal power scheduling[C]// LNCS 4403:Proc of the 4th International Conference on Evolutionary Optimization.Matsushima, Japan: Spring- er-Verla~, 2007 : 803-817.
  • 10Jin Y C, Sendhoff B.Constructing dynamic optimization test problems using the multiobjective optimization con- cept[C]//LNCS 3005:Proc of the Evolutionary Work- shops 2004.Heidelberg, Germany: Springer-Verlag, 2004 : 525-536.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部