期刊文献+

表面活性剂辅助制备钛阳极的电化学性能 被引量:4

ELECTROCHEMICAL PROPERTIES OF TITANIUM ANODES PREPARED BY SURFACTANT-ASSISTED
原文传递
导出
摘要 用阳离子表面活性剂(CTAB)作为阳极氧化物涂层生长模板剂,用热分解法制备出30%RuO_2-70%TiO_2/Ti涂层电极。用计时电位、循环伏安方法分析CTAB用量对涂层电催化性能的影响。结果表明:CTAB在降低析氯电位,提高电极电催化活性上具有显著的效果。表面活性剂CTAB所起的作用主要可以归结为两个方面,一方面用表面活性剂为模板剂使制备的阳极涂层具有高比表面积和多孔性结构,增大涂层的真实表面积;另一方面,CTAB辅助所制备的电极涂层具有高密度的缺陷结构,使涂层的催化活性位密度增大。 30%Ru-70%Ti/Ti anode coatings on titanium TA2 substrates were prepared by thermal decomposition method.The cationic surfactant cetyltrimethylammonium bromide(CTAB) was introduced into this process as a templating agent.The effect of the templating agent CTAB on the surface area and the electro-catalytic activity of the anodes were studied by chlorine evolution potential(ECl),cyclic voltammetry(CV), voltammetric charge capacity(q^*),active sites(Na) and roughness(Rf) tests.The results show that the using of templating agent CTAB had significant effects on reducing chlorine potential and enhancing electrocatalytic activity.The improvements of the electrocatalytic activity the RuO2-TiO2/Ti anodes can be attributed to two reasons:on the one hand,the high-surface areas and the porous oxide structures were obtained via CTAB,on the other hand,the porous oxide coatings had high-density structural defects,the surface active sites density was increased.
出处 《中国腐蚀与防护学报》 CAS CSCD 北大核心 2010年第6期449-452,共4页 Journal of Chinese Society For Corrosion and Protection
基金 国家高技术发展计划项目(2007AA03Z325) 福建省重点国际合作项目(20021011) 福州大学科技启动基金项目(2006-XQ-02)资助
关键词 钛阳极 表面活性剂 粗糙度 表面活性点 电化学性能 titanium anode surfactant roughness surface-active site electrochemical properties
  • 相关文献

参考文献20

  • 1Beer H B. The invention and industrial development of metal anodes [J]. J Electrochem. Soc., 1980, 127(8): 303C- 307C.
  • 2Trasatti S. Electrocatalysis: understanding the success of DSA [J]. Electrochim. Acta, 2000, 45(15): 2377-2385.
  • 3Xu L K, Scantlebury J D. A study on the deactivation of an IrO2-Ta2O5 coated titanium anode [J]. Corros. Sci., 2003, 45(12): 2729-2740.
  • 4Hayfield P C S. Development of the noble metal/oxide coated titanium electrode [J]. Platin Met. Rev., 1998, 42(2): 46-55.
  • 5Xu L K, Xin Y L, Wang J T. A comparative study on IrO2- Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochim. Acta, 2009, 54(6): 1820-1825.
  • 6Comninellis C, Vercesi G P. Characterization of DSA- type oxygen evolving electrodes: Choice of a coating [J]. J Appl. Electrochem., 1991, 21(4): 335-345.
  • 7Terezo A J, Pereira E C. Fractional factorial design applied to investigate properties of Ti: IrO2-Nb2O5 electrodes [J]. Electrochim. Acta, 2000, 45(25-26): 4351-4358.
  • 8Feng S X. Ordered mesoporous materials with improved stability and catalytic activity [J]. Catalysis, 2005, 35(1): 9-24.
  • 9Ratnamala A, Suresh G, Durga K V, et al. Template syn- thesized nano-crystalline natrotantite: Preparation and photocatalytic activity for water decomposition [J]. Mater. Chem. Phys., 2008, 110(1): 176-179.
  • 10Debraj C, Subhash C L, Asim B. Highly porous organic- inorganic hybrid silica and its titanium silicate analogs as efficient liquid-phase oxidation catalysts [J]. Appl. Catal- ysis A: General, 2008, 342(1-2): 29-34.

二级参考文献4

共引文献5

同被引文献51

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部