期刊文献+

基于正则化粒子滤波的说话人跟踪方法 被引量:7

Speaker tracking method based on regularized particle filtering
下载PDF
导出
摘要 针对噪声与混响环境下的说话人跟踪问题,提出一种基于正则化粒子滤波(RPF)的麦克风阵列声源定位与跟踪方法.该方法在正则化粒子滤波框架下,采用适应性较强的布朗运动模型,通过计算麦克风阵列波束形成器的输出能量来构建似然函数.实验结果表明,本文方法优于标准粒子滤波,有效提高了说话人声源跟踪系统的抗噪声与抗混响能力,即使在低信噪比(SNR=-5dB)情况下,也能有效跟踪. Aimed at the problem of speaker tracking in noisy and reverberant environments,a speaker's sound source positioning and tracking method was presented based on microphone array with regularized particle filtering(RPF).In the framework of regularized particle filtering,the stronger adaptability of Brown motion model was used to construct a likelihood function by means of calculating beamforming output energy of the microphone array.The results of simulation data showed that this method was better than the standard particle filtering,and the capability of antinoise and anti-reverberation of the speaker tracking system of sounds source was improved effectively.Tracking would be effective even in the case of low signal-noise ratio(SNR=-5 dB).
作者 曹洁 李伟
出处 《兰州理工大学学报》 CAS 北大核心 2010年第6期85-88,共4页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(1010RJZA046) 甘肃省财政厅项目(0914ZTB148)
关键词 说话人跟踪 麦克风阵列 正则化粒子滤波 房间混响 speaker tracking microphone array regularized particle filtering room reverberation
  • 相关文献

参考文献5

二级参考文献45

  • 1杜江,朱柯.智能麦克风阵列语音分离和说话人跟踪技术研究[J].电子学报,2005,33(2):382-384. 被引量:9
  • 2王鑫,胡昌华,暴飞虎.对粒子滤波器的若干改进算法[J].统计与决策,2007,23(3):8-9. 被引量:1
  • 3Potamitis I,Chen H M,Tremoulis G.Tracking of multiple moving speakers with multiple microphone arrays.IEEE Transactions on Speech and Audio Processing,2004,12(5):520-529
  • 4Brandstein M A.A Framework for Speech Source Localization Using Sensor Arrays[Ph.D.dissertation],Brown University,USA,1995
  • 5Dvorkind T,Gannot S.Speaker localization exploiting spatial-temporal information.In:Proceedings of the IEEE International Workshop on Acoustic Echo and Noise Control.Kyoto,Japan:IEEE,2003.295-298
  • 6Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear and non-Gaussian Bayesian state estimation,IEE Proceedings on Radar and Signal Processing,1993,140(2):107-117
  • 7Liu J S,Chen R.Sequential Monte Carlo methods for dynamic systems.Journal of the American Statistical Association,1998,93(443):1032-1044
  • 8Vermaak J,Blake A.Nonlinear filtering for speaker tracking in noisy and reverberant environments.In:Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Salt Lake City,USA:IEEE,2001.3021-3024
  • 9Ward D B,Lehmann E A,Williamson R C.Particle filtering algorithms for tracking an acoustic source in a reverberant environment.IEEE Transactions on Speech and Audio Processing,2003,11(6):826-836
  • 10Guo D,Wang X D.Quasi-Monte Carlo filtering in nonlinear dynamic systems.IEEE Transactions on Signal Processing,2006,54(6):2087-2098

共引文献321

同被引文献65

  • 1LIU P R,MENG M Q H, LIU P X,et al. Optical flow and active contour for moving object segmentation and detection in monocular robot [C]//Proeeedings 2006 IEEE International Conference on Robotics and Automation. Washigton DC: IEEE, 2006 : 4075-4080.
  • 2MAGGIO E,CAVALLARO A. Hybrid particle filter and mean shift tracker with adaptive transition model [J]. Acoustics Speech and Signal Processing, 2005,11: 221-224.
  • 3COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (5): 564-577.
  • 4GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-gaussian bayesian state estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2):107-113.
  • 5BRASNETT P, MIHAYLOVA L, BULL D. Sequential Monte Carlo tracking by fusing multiple cues in video sequences [J]. Image and Vision Computing,2007,25(1):1217-1227.
  • 6CAVIAR:Context aware vision using image-based active recngnition [EB/OL]. [2010-09-15]. http://homepages. inf. ed. ac. uk/rbf/CAviAR.
  • 7DOUCET A, GODSILL S J, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000,10(3) : 197-208.
  • 8SCHEI T S. A finite-difference method for linearization in nonlinear estimation algorithm[J]. Automatiea, 1997, 33 (11) : 2053-2058.
  • 9DER MERWE R V. A doucet the unscented particle filter advance in neural information processing systems [M]. Boston: MIT, 2000.
  • 10KOTECHA J H, DJURIC P M. Gaussian sum particle filtering [J]. IEEE Trans on Signal Processing, 2003, 51 (10): 2602-2612.

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部