摘要
航空发动机推力估计所需要的健康参数较多,而安装的传感器数量相对较少。为解决二者之间的矛盾,运用奇异值分解算法,设计了基于该算法的降维卡尔曼滤波器,对用少量传感器发动机的健康参数进行最优估计,进而重构发动机的推力。数字仿真结果验证了其在航空发动机中应用的可能性。
Accurate thrust reconstruction depends on knowledge of health parameters, but there are usually too few sensors to be able to estimate their values. Based on Singular Value Decomposition(SVD), a new dimension reduction Kalman Filter (KF) is designed. In this new technique, aero-engine health parameters can be optimal estimated by a small amount of sensors, which enable the reconstruction of unmeasured aero-engine outputs, such as thrust. The simulation results indicate that the designed SVD-KF has good performance.
出处
《中国民航大学学报》
CAS
2010年第6期14-17,25,共5页
Journal of Civil Aviation University of China
关键词
航空
推进系统
发动机
卡尔曼滤波
aviation
propulsion system
aero-engine
Kalman Filter