期刊文献+

硼锗共掺光纤CCG的载氢研究 被引量:3

Research on the Hydrogen-Load of B-Ge Co-Doped Fiber Chemical Composition Grating
下载PDF
导出
摘要 为研究载氢的作用对由载氢引起的硼锗共掺光纤CCG的形成及其热稳定性进行实验,利用硼锗掺杂物浓度分别为w(Ge)=9.640%,w(B)=0.475%和w(Ge)=28.277%,w(B)=2.375%的光纤进行对比试验.实验结果显示:相同载氢条件下高浓度的Ge离子更容易导致FBG在高温退化,并获得CCG的高温稳定性;对于相同掺杂的光纤,氢元素能提高CCG的反射比,但同时也引起光栅反射比在高温时不稳定.通过对上述两种影响因素的优化,实验获得了传感范围在10~1 010℃,反射比接近40%的高温稳定光栅. To explore the effect of hydrogen-loading on B-Ge co-doped fiber chemical composition grating (CCG), the thermal stability and generating property of B-Ge co-doped fiber CCG caused by hydrogen-loading have been experimentally studied. Different dopant concentrations of two fibers have been used as the subjects for comparison, one is w(Ge) = 9. 640% with w(B) = 0.475% and the other is w(Ge)=28.277% with w(B)=2.375%. The result shows that, with the same conditions of hydrogen-loading and high temperature, the higher concentration of germanium in the fiber is, the easier to bring about the decay of fiber Bragg grating (FBG) and the thermal instability of CCG is. For the same fibers with different hydrogen-loading conditions, hydrogen would increase the reflectance of grating, but make its stability worse. By trial, the excellent thermal sensor with better stability in high temperature condition is fabricated, which can be used in the range from 10-1010 ℃ with reflectance of about 40%.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2011年第1期83-86,共4页 Transactions of Beijing Institute of Technology
基金 北京市自然科学基金资助项目(3063022)
关键词 化学组分光栅 高温 光纤光栅 chemical composition grating high temperature fiber grating
  • 相关文献

参考文献13

  • 1Baker S R, Rourke H N, Baker V, et al. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber[J]. IEEE J Lightwave Technol, 1997,15:1470- 1477.
  • 2Dong L, Cruz J L, Tucknott J A, et al. Strong photosensitive gratings in tin-doped phosphosilicate optical fibers[J]. Opt Lett, 1995,20:1982-1984.
  • 3Nguyen L V, Hwang D, Moon S, et al. High temperature fiber sensor with high sensitivity based on core diameter mismatch [J]. Opt Express, 2008, 16(15) :11369 - 11375.
  • 4Rao Y J, Ran Z L, Liao X, et al. Hybrid LPFG/ MEFPI sensor for simultaneous measurement of hightemperature and strain [J]. Opt Express, 2007, 15(22):14936 - 14941.
  • 5Fokine M. Formation of thermally stable chemical composition gratings in optical fibers[J].Opt Soc Am B, 2002,19(8) :1759 - 1765.
  • 6Fokine M. Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber[J]. Opt Lett, 2004,29 (11) : 1185 - 1187.
  • 7Trpkovski S, Kithcer D J, Baxter G W, et al. High- temperature-resistant chemical composition Bragg gratings in Er^3+-doped optical fiber [J]. Opt Lett, 2005,30(6) :607 - 609.
  • 8Zhang B, Kahrizi M. High temperature resistance temperature sensor based on the hydrogen loaded fiber Bragg grating[J]. IEEE SensJ, 2007,7(4) :586-591.
  • 9Lemaire P J, Atkins R M, Mizrahi V, et al. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres[J]. Electron Lett, 1993, 29(13) :1191 - 1193.
  • 10Aslund M, Canning J, Yoffe G. Locking in photosensitivity within optical fiber and planar waveguides by ultraviolet preexposure[J].Opt Lett, 1999,24(24):1826 - 1828.

同被引文献54

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部