期刊文献+

用差别矩阵思想设计的基于正区域的高效属性约简算法 被引量:5

Efficient Attribute Reduction Algorithm Based on the Idea of Discernibility Object Pair Set
下载PDF
导出
摘要 近来一些学者用差别矩阵或差别矩阵的思想设计了基于正区域的属性约简算法.由于计算差别矩阵是一个既消耗时间又消耗空间的过程,故这些算法的效率并不好.为了降低这类属性约简算法的复杂度,文中利用基于区分对象对的属性约简的思想,在简化决策表的基础上,定义了一个函数,该函数能度量简化决策表中条件属性集产生的区分对象对的个数,并用该函数设计了一个启发函数,同时给出了计算该启发函数的快速算法,经分析其时间和空间复杂度均为O(|U/C|).最后用该启发函数设计了一个有效的基于正区域的属性约简算法,该算法的时间复杂度降为O(|C||U|),空间复杂度降为O(|U|).文中还用一个具体实例说明了新算法的有效性.经实验证明,新算法具有较高的效率. At present, some researchers have designed some attribute reduction algorithms based on the positive region with the discernibility matrix or the idea of the discernibility matrix. Since the computing discernibility matrix is time-consuming and space-consuming, the efficiency of those algorithms is not good. To reduce the complexity of this type of algorithms, a function, which can measure the numbers of discernibility object pair produced by conditional attributes, is defined on simplified decision table with the idea of attribute reduction based on discernibility object pair. And the function is used to design a new heuristic function. At the same time, an efficient algorithm for computing the heuristic function is proposed. Both time complexity and space complexity are O( | U/C| ). Then an efficient algorithm of attribute reduction based on the positive region is designed with the heuristic function, its time complexity and space complexity are reduce to O( |C|| U| ) and O( | U| ) , respectively. At last, an example is used to illustrate the efficiency of the new algorithm. The results of experiment show that the efficiency of the new algorithm is improved.
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第2期299-304,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60775042)资助 北京市重点学科建设项目(XK100080537)资助
关键词 粗糙集 正区域 区分对象对 属性约简 算法复杂度 rough set positive region discernibility object pair attribute reduction complexity of algorithm
  • 相关文献

参考文献10

二级参考文献60

  • 1王国胤.不相容决策信息系统属性核的研究[J].上海交通大学学报,2004,38(12):2094-2098. 被引量:13
  • 2李千目,许满武,杨云,张宏,刘凤玉.一种新的网络故障诊断方法——FTFD[J].计算机研究与发展,2005,42(11):1928-1933. 被引量:9
  • 3李洪兴.因素空间理论与知识表示的数学框架(Ⅰ)──因素空间的公理化定义与描述架[J].北京师范大学学报(自然科学版),1996,32(4):470-475. 被引量:67
  • 4王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 5[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning a bout Data. Boston: Kluwer Academic Publishers,1991
  • 6[6]Ziarko W. Variable precision rough set model. Journal of Computer and System Sciences,1993,46(1):39~59
  • 7[7]Greco S,Matarazzo B,Slowinski R. A new rough set approach in multicreteria and multiattribute classification. In: Lecture Notes in Artificial Intelligence 1424, New York: Springer-Verlag, 1998
  • 8[8]Slezak D. Approximate reducts in decision tables. In: Proceedings of IPMU' 96 ,Granada,Spain, 1996,3:159~ 1164
  • 9[9]Quafatou M. α-RST: A generalization of rough set theory. In formation Sciences,2000,124(1~4) :301~316
  • 10[10]Kryszkiewicz M. Comparative studies of alternative type of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems, 2001,16(1): 105~120

共引文献966

同被引文献39

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部