期刊文献+

鲁棒半监督局部线性嵌入算法 被引量:1

Robust Semi-supervised Locally Linear Embedding
下载PDF
导出
摘要 主要研究半监督局部线性嵌入算法(Semi-Supervised Locally Linear Embedding,简称SSLLE)对于噪声的敏感性,提出一种具有鲁棒性的半监督局部线性嵌入算法(Robust Semi-Supervised Locally Linear Embedding,简称RSSLLE).RSSLLE在对数据进行离群点检测的基础上,从两方面增加算法对离群点的鲁棒性.对于光滑点集,直接对其采用SSLLE算法进行降维,以避免离群点对光滑点的影响;对于离群点集,利用其局部投影坐标计算局部重构权,从而真正反映离群点的局部线性关系.再将光滑点集作为训练点集,结合SSLLE方法计算离群点集的低维坐标.模拟实验和实际例子表明RSSLLE对噪声有很好的鲁棒性. The paper focuses on the sensitivity of Semi-Supervised Locally Linear Embedding ( SSLLE) to outliers, and presents a robust Semi-Supervised Locally Linear Embedding (RSSLLE). RSSLLE bases on the outlier detection and improves the robustness against outliers in two ways. On the clean data set, SSLLE is applied to obtain the low-dimensional results, to avoid the influence caused by the outliers. On the outlier set, the local reconstruction weights of the outliers are computed by using the local projection coordinates, which can reflect the intrinsic local geometry of the manifold. And then it regards the clean data points as training data points to compute the low-dimensional coordinates of the outliers by SSLLE. Simulation and real examples show that RSSLLE is robust against outliers.
作者 戴志波 王靖
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第2期310-316,共7页 Journal of Chinese Computer Systems
基金 国家自然科学青年基金项目(10901062)资助 福建省自然科学基金项目(2010J01336)资助
关键词 半监督局部线性嵌入 流形 离群点 鲁棒 semi-supervised locally linear embedding manifold outlier robust
  • 相关文献

参考文献11

  • 1Jolliffei T. Principal component analysy[ M]. New York: Springer-Verlag, 1986.
  • 2Cox T, Cox M. Multidimensional scaling [ M ]. Londom: Chapman &Hall, 2001.
  • 3Tenenbaum J, Siivad D, Angford J. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290 (5500) :2319-2323.
  • 4Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000,290:2323-2326.
  • 5Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM J Scientific Computing, 2005,6(1) :313-338.
  • 6Beikin M, Niyogi I. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15 (6) :1373-1396.
  • 7Wang Jing, Zhang Zhen-yue. Nonlinear embedding preservmg multiple local-lincaritics[M]. Pattern Recognition(2010). Article in Press, 2010.
  • 8Hadid A, Pictikaincn M. Manifold learning for video-to-video face recognition[ C ]. Biometric ID Management and Multimodal Communication, BioID_MultiComm 2009 Proceedings, Lecture Notes in Computer Science 5707,9-16.
  • 9Hadid A, Pietikaincn M. Manifold learning for gender classification from face sequences[ C]. In: Proc. 3rd IAPR/IEEE International Conference on Biometrics, ICB2009 (2009).
  • 10Yang Xin, Fu Hao-ylng, Zha Hong-yuan, et al. Semi-supervised nonlinear dimensionality reduction [ C ]. Proceedings of the 23th International Conference on Machine Learning, 2006, 1065-1072.

同被引文献25

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部