期刊文献+

关于单机两个客户竞争排序问题1||∑w_j^Ac_j^A:f_(max)~B≤Q的一个注记

A Note on the Single Machine Competitive Scheduling Problem with Two-agent 1||Σw_j^Ac_j^A:f_(max)~B≤Q
原文传递
导出
摘要 研究了单机两个客户竞争排序问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q,证明了该问题与问题1|MA_i|∑w_jc_j及问题1|h_i,pmtn|∑w_jc_j之间是相互等价的.对w_j=p_j时的特殊情形,指出了问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q存在近似比为2的最长处理时间优先算法(LPT)且该界是紧的,对w_j任意的一般情形,指出了问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q存在近似比为4+ε的近似算法.当客户B的工件数是常数时,对问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q则给出了伪多项式时间的动态规划算法.此外,指出了问题1‖∑w_j^Ac_j^A:∑w_j^Bc_j^B≤Q具有多项式时间近似方案(PTAS). In this paper,we consider a single machine competitive scheduling problem with two-agent 1||∑wj^Acj^A:fmax^B≤Q and prove that the problems 1||∑wj^Acj^A:fmax^B≤Q, 1|MAi|Σwjcj and 1|hi,pmtn|Σwjcj are equivalent.For the special case with w_j = p_j,we show that there exists a 2-approximation algorithm which is named as longest-processing-time -first(LPT) algorithm and the bound is tight.As for the general case with arbitrary w_j,we argue that there exists a(4+ε)-approximation algorithm.when the number of jobs belonging to agent B is fixed,we then propose a pseudo-polynomial time dynamic programming algorithm.Moreover,we point out that the problem 1||∑wj^Acj^A:fmax^B≤Q admits a polynomial time approximation scheme(PTAS).
出处 《应用数学学报》 CSCD 北大核心 2011年第1期73-80,共8页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11071215) 宁波大学学科科研基金(xk1061)资助项目
关键词 两个客户 竞争排序 多个维护 近似算法 two-agent competitive scheduling multiple Maintenances approximation algorithms
  • 相关文献

参考文献13

  • 1Agnetis A, Mirchandani P B, Pacciarelli D, Pacifici A. Scheduling Problems with Two Competing Agents. Operations Research, 2004, 52(2): 229-242.
  • 2Agnetis A, Pacciarelli D, Pacifici A. Multi-agent Single Machine Scheduling. Annals of Operations Research, 2007, 150:3-15.
  • 3Leung J Y-T, Pinedo M L, Wan G H. Competitive Two Agent Scheduling and its Applications. Operations Research, 2010, 58(2): 458-469.
  • 4Cheng T C E, Ng C T, Yuan J J. Multi-agent Scheduling on a Single Machine to Minimize Total Weighted Number of Tardy Jobs. Theoretical Computer Science, 2006, 362:273-281.
  • 5Cheng T C E, Ng C T, Yuan J J. Multi-agent Scheduling on a Single Machine with max-form Criteria. European Journal of Operational Research, 2008, 188:603-609.
  • 6Ng C T, Cheng T C E, Yuan J J. A Note on the Complexity of the Problem of Two-agent Scheduling on a Single Machine. Journal of Combinatorial Optimization, 2006, 12:387-394.
  • 7Agnetis A, Pascale G D, Pacciarelli D. A Lagrangian Approach to Single-machine Scheduling Problems with Two Competing Agents. Journal of Scheduling, 2009, 12:401-415.
  • 8Lee K, Choi B C, Leung J Y-T, Pinedo M L. Approximation Algorithms for Multi-agent Scheduling to Minimize Total Weighted Completion Time. Information Processing Letters, 2009, 16:913-917.
  • 9Kellerer H, Strusevich V A. Fully Polynomial Approximation Schemes for a Symmetric Quadratic Knapsack Problem and its Scheduling Applications. Algorithmica, 2010, 57:769-795.
  • 10Graham R L, Lawler E L, Lenstra J K, Rinnooy Kan A H G. Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey. Annals of Discrete Mathematics, 1979, 5: 287-326.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部