摘要
研究了单机两个客户竞争排序问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q,证明了该问题与问题1|MA_i|∑w_jc_j及问题1|h_i,pmtn|∑w_jc_j之间是相互等价的.对w_j=p_j时的特殊情形,指出了问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q存在近似比为2的最长处理时间优先算法(LPT)且该界是紧的,对w_j任意的一般情形,指出了问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q存在近似比为4+ε的近似算法.当客户B的工件数是常数时,对问题1‖∑w_j^Ac_j^A:f_(max)~B≤Q则给出了伪多项式时间的动态规划算法.此外,指出了问题1‖∑w_j^Ac_j^A:∑w_j^Bc_j^B≤Q具有多项式时间近似方案(PTAS).
In this paper,we consider a single machine competitive scheduling problem with two-agent 1||∑wj^Acj^A:fmax^B≤Q and prove that the problems 1||∑wj^Acj^A:fmax^B≤Q, 1|MAi|Σwjcj and 1|hi,pmtn|Σwjcj are equivalent.For the special case with w_j = p_j,we show that there exists a 2-approximation algorithm which is named as longest-processing-time -first(LPT) algorithm and the bound is tight.As for the general case with arbitrary w_j,we argue that there exists a(4+ε)-approximation algorithm.when the number of jobs belonging to agent B is fixed,we then propose a pseudo-polynomial time dynamic programming algorithm.Moreover,we point out that the problem 1||∑wj^Acj^A:fmax^B≤Q admits a polynomial time approximation scheme(PTAS).
出处
《应用数学学报》
CSCD
北大核心
2011年第1期73-80,共8页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11071215)
宁波大学学科科研基金(xk1061)资助项目
关键词
两个客户
竞争排序
多个维护
近似算法
two-agent
competitive scheduling
multiple Maintenances
approximation algorithms