摘要
本文研究了一类非线性抛物方程的初边值问题,即u_t-f(u)_(xx)=0,x∈R_+,f′(u)>0,u(0,t)=u_,t≥0;u(+∞,0)=u+.这里我们考虑一般情形,即u_≠u+.在某种小性条件下,我们证明了以上抛物方程的解存在且当时间充分大时,解趋近该问题的自相似解 u(x/1+t^(1/2) ).我们还进一步得到了解的最优衰减速度为(1+t)^(-1/4).
This paper studied the initial and boundary value problems to a kind of nonlinear parabolic equations:ut-f(u)xx = 0,x∈R+,f'(u)0,u(0,t) = u-,t≥0;u(+∞,0) = u+.The general case u-≠u+ is considered.It is proved that under some smallness conditions the solutions of this problem tend to the self-similar solution u(x/1+t1/2 ) as the time t goes to infinity.Furthermore,the optimal decay rate is also obtained which reads(1 + t)-1/4.
出处
《应用数学学报》
CSCD
北大核心
2011年第1期113-121,共9页
Acta Mathematicae Applicatae Sinica
关键词
非线性抛物方程
初边值问题
扩散波
衰减速度
nonlinear parabolic equations
initial and boundary value problem
diffusion wave
decay rate