期刊文献+

某一类控制系统中发生的指数偏差现象 被引量:1

The large deviation phenomenon on Lyapunov exponents in some class of control systems
原文传递
导出
摘要 我们考虑在某类控制系统中,以Lyapunov指数作为观测量,远离给定遍历测度的那些周期测度.对于这类周期测度的数量关于周期的指数增长率,我们将用测度熵在某个集合上的上界给出它的一个上限控制. In some class of control systems, we consider the periodic measures whose i-th Lyapunov exponent is far from a given ergodic measure for some i. We estimate the exponential growth rate of such periodic measures and give a upper bound of the exponential growth rate by the supremum of entropy.
作者 钱盛 孙文祥
出处 《中国科学:数学》 CSCD 北大核心 2011年第1期33-42,共10页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10671006和10831003) 教育部重点基金资助项目
关键词 指数增长率 广义测度熵 正规标架丛 exponential growth rate, generalized entropy, orthogonal frame bundle
  • 相关文献

参考文献11

  • 1Dai X. Almost sure and partial stability of discrete-time linear random control systems. Preprint, 2009.
  • 2Wang Z, Sun W. Lyapunov exponents of hyperbolic measures and hyperbolic periodic orbits. Trans Amer Math Soc, 2010, 362:4267- 4282.
  • 3Kifer Y. Large deviations in dynamical systems and stochastic processes. Trans Amer Math Soc, 1990, 321:505-523.
  • 4Pollieott M. Large deviations, Gibbs measures and closed orbits for hyperbolic flows. Math Z, 1995, 220:219-230.
  • 5Gelfert K, Wolf C. On the distribution of periodic orbits. Preprint, 2009.
  • 6Qian S, Sun W. Deviation property of periodic measures in non-uniformly hyperbolic systems. Preprint, 2009.
  • 7Sun W. Qualitative functions and characteristic spectra for diffeomorphisms. Far East J Appl Math, 1998, 2:169 -182.
  • 8Walters P. An Introduction to Ergodic Theory. New York: Springer-Verlag, 1981.
  • 9Aubin J, Ekeland I. Applied Nonlinear Analysis. Pure and Applied Mathematics. New York: John Wiley and Sons, 1984.
  • 10t-uelle D. Thermodynamic Formalism. Cambridge: Cambridge Univ Press, 2004, 110 -111.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部