期刊文献+

最大度为7且不含带弦5-圈的平面图是8-全可染的 被引量:4

Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable
原文传递
导出
摘要 若能用k种颜色给图的顶点和边同时进行染色使得相邻或相关联的元素(顶点或边)染不同的色,则称这个图是k-全可染的.显然,给最大度为△的图进行全染色,至少要用△+1种不同的色.本文证明最大度为7且不含带弦5-圈的平面图是8-全可染的.这一结果进一步拓广了(△+1)-全可染图类. Let G = (V, E) be a graph with the set of vertices V and the set of edges E. If one can use k colors to color the elements in V ∪ E such that any pair of adjacent or incident elements receive distinct colors, then G is said to be k-totally-colorable. Clearly, at least △+ 1 colors are needed to color a graph totally, where A is the maximum degree of G. It is known that the plane graphs with maximum degree △ ≥ 8 and without 5-cycles with chords are (△ + 1)-totally-colorable. In this paper, we prove that the plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable.
出处 《中国科学:数学》 CSCD 北大核心 2011年第1期95-104,共10页 Scientia Sinica:Mathematica
基金 浙江省自然科学基金(批准号:Y6090699) 国家自然科学基金(批准号:10971198) 浙江省创新团队(批准号:T200905)资助项目
关键词 平面图 全染色 最大度 带弦5-圈 plane graph total coloring maximum degree 5-cycles chords
  • 相关文献

参考文献30

  • 1Bandy J A, Murty U S R. Graph Theory. Berlin: Springer-Verlag, 2008.
  • 2Behzad M. Graphs and their chromatic numbers. PhD Thesis, Michigan State University, 1965.
  • 3Vizing V G. Some unsolved problems in graph theory (in Russian), Uspekhi Mat Nauk, 1968, 23:117-134.
  • 4Rosenfeld M. On the total coloring of certain graphs. Israel J Math, 1971, 9:396- 402.
  • 5Vijayaditya N. On total chromatic number of a graph. J London Math Soc, 1971, 3:405- 408.
  • 6Kostochka A V. The total coloring of a multigraph with maximal degree 4. Discrete Math, 1977, 17:161- 163.
  • 7Kostochka A V. The total chromatic number of any multigraph with maximum degree five is at most seven. Discrete Math, 1996, 162:199- 214.
  • 8Borodin O V. On the total coloring of planar graphs. J Reine Angew Math, 1989, 394:180- 185.
  • 9Sanders D P, Zhao Y. On total 9-coloring of planar graphs of maximum degree seven. J Graph Theory, 1999, 31: 67 -73.
  • 10Andersen L. Total coloring of simple graph (in Danish). Master's Thesis, University of Aalhorg, 1993.

同被引文献3

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部