期刊文献+

盾构隧道开挖面稳定极限理论研究 被引量:81

Limit theoretical study on face stability of shield tunnels
下载PDF
导出
摘要 基于村山氏极限平衡法和极限分析上限法研究了盾构隧道开挖面稳定性,推导了维持开挖面稳定的最小极限支护压力计算公式。类似于Terzaghi地基承载力的叠加原理,将极限支护压力表示为土体黏聚力、地表超载和土体重度三项贡献的叠加,并对各自影响系数进行了分析。分析结果表明,极限平衡法得到的黏聚力影响系数随土体内摩擦角增大而增大,随隧道埋深比增加而减小,地表超载和土体重度影响系数均随土体内摩擦角增大而减小,地表超载影响系数随隧道埋深比增加而减小,土体重度影响系数随隧道埋深比增大而增大。当内摩擦角较小时,极限分析法得到的三项系数与土体内摩擦角和隧道埋深比的关系表现出与极限平衡相同的规律,但当土体摩擦角达到一定值时,土体黏聚力和土体重度的影响系数则不再随隧道埋深比而变化,地表超载影响消失。极限分析法得到的极限支护压力及三项系数均低于极限平衡法,但更接近现有文献中的有限元数值模拟结果。 Based on the limit equilibrium of Murayama and the upper bound limit analysis method,the face stability of shield tunnels is studied.Formulas for calculating the least support pressure at collapse are deduced.Analogous to Terzaghi's superposition method commonly used in bearing capacity analysis,the least support pressure is expressed by the summation of the cohesion c,surcharge load q and gravity γ multiplied by the corresponding influence numbers Nc,Nq,Nγ.In the limit equilibrium,Nc increases with the increase of the friction angle and the decrease of the ratio of tunnel depth C to diameter D,Nq and Nγ decrease with the increase of the friction angle Nq decreases and Nγ increases with the increasing value of C/D.In the upper bound limit analysis,the three stability numbers show the same trends only when the friction angle is less than an appropriate value which depends on C/D;otherwise Nc and Nγ keep constant,and Nq turns to be zero for any value of C/D.The three stability numbers obtained from the upper bound limit analysis are less than the results of the limit equilibrium and fit to the results obtained by the FE numerical simulation in the literatures.
出处 《岩土工程学报》 EI CAS CSCD 北大核心 2011年第1期57-62,共6页 Chinese Journal of Geotechnical Engineering
基金 国家自然科学基金青年科学基金项目(50908171) 国家杰出青年科学基金项目(50825803) 上海市学科带头人计划项目(09XD1403900)
关键词 盾构隧道 开挖面稳定 支护压力 极限平衡 极限上限分析 shield tunnel face stability support pressure limit equilibrium upper bound limit analysis
  • 相关文献

参考文献14

  • 1BROMS B B, BENNERMARK H. Stability of clay at vertical openings[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 96(1): 71 - 94.
  • 2COMEJO L. Instability at the face: its repercussions for tunneling technology[J]. Tunnels and Tunneling, 1989(21): 69 - 74.
  • 3JANCSECZ S, STEINER W. Face support for a large mix-shield in heterogeneous ground conditions[C]// Symposium Tunnelling '94. 1994:531 - 550.
  • 4DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive soil[J]. Geotechnique, 1980, 30: 397-416.
  • 5LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Geotechnique, 1990, 40: 581-606.
  • 6SOUBRA A H. Three-dimensional face stability analysis of shallow circular tunnel[C]// International Conference on Geotechnical and Geological Engineering, Australia: Melbourne, 2000.
  • 7CHAMBON E CORTE J E Shallow tunnels in cohesionless soil: Stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148 - 1165.
  • 8MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(1): 215 - 229.
  • 9AUGARDE C E, LYAMIN A V, SLOAN SW. Stability of an undrained plane strain heading revisited[J]. Computers and Geotechnics, 2003, 30:419 - 430.
  • 10VERMEER EA., RUSE N., MARCHER T. Tunnel heading stability in drained ground[J]. Felsbau, 2002, 20(8): 8 - 18.

二级参考文献25

共引文献127

同被引文献705

引证文献81

二级引证文献620

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部