摘要
本文提出了通过调整权因子而不是改变控制顶点来修改有理三次Bézier样条曲线的形状,实现了相邻两段Bézier曲线间的G3连续拼接;实现了两段分离的Bézier曲线之间的G3连续过渡;在不改变给定控制顶点的情况下,能实现整体曲率连续的闭曲线造型;在仅仅修改或插入两点的情形下实现了整体G3连续的闭曲线造型。
In this thesis,a new method is proposed for adapting the shape of the rational cubic Bézier curve via the change of the weights.As a result,the continuity between two adjacent rational cubic Bézier curves and the continual transition between two separate rational cubic Bézier curves are achieved.Furthermore,the closed curve modeling of the complete continuity can be realized by changing or inserting two vertices instead of modifying the defined controlling vertices.
出处
《价值工程》
2011年第3期205-205,共1页
Value Engineering