期刊文献+

特征词抽取和相关性融合的伪相关反馈查询扩展 被引量:6

Query Expansion of Pseudo Relevance Feedback Based on Feature Terms Extraction and Correlation Fusion
原文传递
导出
摘要 针对现有信息检索系统中存在的词不匹配问题,提出一种基于特征词抽取和相关性融合的伪相关反馈查询扩展算法以及新的扩展词权重计算方法。该算法从前列n篇初检局部文档中抽取与原查询相关的特征词,根据特征词在初检文档集中出现的频度以及与原查询的相关度,将特征词确定为最终的扩展词实现查询扩展。实验结果表明,该方法有效,并能提高和改善信息检索性能。 Aiming at the term mismatch issues of existing information retrieval systems, a novel query expansion algorithm of pseudo relevance feedback is proposed based on feature terms extraction and correlation fusion. At the same time, a new computing method for weights of expansion terms is also given. The algorithm can extract feature terms related to original quer7 from the n chapter top - ranked retrieved local documents, and then identify those feature terms as final expansion terms according to the fiequency of each feature term appeared in the local documents and the correlation between each feature term and the entire original query for query expansion. The results of the experiment show that the method is effective, and it can enhance and improve the performance of information retrieval.
作者 冯平 黄名选
出处 《现代图书情报技术》 CSSCI 北大核心 2011年第1期52-56,共5页 New Technology of Library and Information Service
基金 广西教育厅科研项目"基于加权负关联规则挖掘的文本信息检索技术研究"(项目编号:201010LX679) 广西教育学院2010年度院级重点课题"基于正负关联规则的信息检索技术研究"(项目编号:桂教院科研[2010]7号(重点)-3)的研究成果之一
关键词 相关性 伪相关反馈 查询扩展 信息检索 Correlation Pseudo relevance feedback Query expansion Information retrieval
  • 相关文献

参考文献12

  • 1黄名选,严小卫,张师超.查询扩展技术进展与展望[J].计算机应用与软件,2007,24(11):1-4. 被引量:53
  • 2Yu S, Cai D, Wen J, et al. Improving Pseudo - Relevance Feed- back in Web Information Retrieval Using Web Page Segmentation [C]. In: Proceedings of the 12th World Wide Web Conference ( WWW2003 ), Budapest, Hungary. 2003 : 11 - 18.
  • 3Huang X, Huang Y R, Wen M, et al. Applying Data Mining to Pseudo - Relevance Feedback for High Performance Text Retrieval [C]. In : Proceedings of the 6th IEEE International Conference on Data Mining ( ICDM' 06), Hong Kong. 2006 : 295 - 306.
  • 4黄名选,严小卫,张师超.基于矩阵加权关联规则挖掘的伪相关反馈查询扩展[J].软件学报,2009,20(7):1854-1865. 被引量:70
  • 5Cao G H, Nie J Y, Gao J F, et al. Selecting Good Expansion Terms for Pseudo - Relevance Feedback [ C ]. In : Proceedings of SIGIR' 08 Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieral ( 2008 ), Singapore. 2008 : 243 - 250.
  • 6Salton G, Buckley C. Improving Retrieval Performance by Relevance Feedback [J]. Journal of the American Society for Information Science, 1990, 41 (4) :288 -297.
  • 7Xu J, Croft W B. Query Expansion Using Local and Global Document Analysis[ C ]. In : Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich, Switzerland. 1996: 4- 11.
  • 8Hang C, Wen J R, Nie J Y, et al. Query Expansion by Mining User Logs [J]. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 829-839.
  • 9Fonseca B M, Golgher P B, Moura E S, et al. Discovering Search Engine Related Query Using Association Rules[J]. Journal of Web Engineering, 2004, 2 (4) : 215 - 227.
  • 10Zhang C, Qin Z, Yan X. Association - based Segmentation for Chinese - Crossed Query Expansion [ J ]. IEEE Intelligent Informatics Bulletin, 2005, 5 ( 1 ) : 18 - 25.

二级参考文献42

  • 1钱晓东,王正欧.基于神经网络文本检索词的语义扩充[J].计算机工程,2004,30(20):22-24. 被引量:3
  • 2Rijsbergen van. A new theoretical framework for information retrieval [ C]. In Proceedings of 1986 ACM Conference on Research and Development in Information Retrieval, 1986 : 194 - 200.
  • 3WordNet lexical database homepage, http ://wordnet. princeton, edu/.
  • 4HowNet knowledge website, http ://www. keenage, com/.
  • 5Lesk M E. Word-word associations in document retrieval systems [ J ]. American Documentation, 1969,20 ( 1 ) : 8 - 36.
  • 6Sparck k Jones, Barber E O. What makes an automatic keyword classification effective [ J ]. Journal of the American Society for Information Sciences, 1971,22 ( 3 ) : 166 - 175.
  • 7Minker J, Wilson G A,Zimmerman B H. An evaluation of query expansion by the addition of clustered terms for a document retrieval system [ J ]. Information Storage and Retrieval, 1972,8 ( 6 ) :329 - 348.
  • 8Voorhees E M. The effectiveness and efficiency of agglomerative hierarchic clustering in document retrieval[ D ]. PhD thesis, Cornell University, 1986.
  • 9Carolyn J Crouch, Yang Bokyung. Experiments in automatic statistical thesaurus construction[ C I. In Proc. of the AGM-SIGIR Conference on Research and Development in Information Retrival, Copenhagen, Denmark, 1992:77 - 88.
  • 10Huang C. Cluster-based query expansion technique [ D ]. Master Thesis, Department of Information Management, National Sun Yat-sen Universuty, Taiwan ,2003.

共引文献115

同被引文献58

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部