期刊文献+

渐进插值的LOOP曲面细分 被引量:1

LOOP subdivision surface of progressive interpolation
下载PDF
导出
摘要 目前很多细分方法都存在不能用同一种方法处理封闭网格和开放网格的问题。对此,一种新的基于插值技术的LOOP曲面细分方法,其主要思想就是给定一个初始三角网格M,反复生成新的顶点,新顶点是通过其相邻顶点的约束求解得到的,从而构造一个新的控制网格M,在取极限的情况下,可以证明插值过程是收敛的;因为生成新顶点使用的是与其相连顶点的约束求解得到的,本质上是一种局部方法,所以,该方法很容易定义。它在本地方法和全局方法中都有优势,能处理任意顶点数量和任意拓扑结构的网格,从而产生一个光滑的曲面并忠实于给定曲面的形状,其控制网格可以是封闭的或者开放的。 Subdivision surfaces can not deal with the open and closed mesh with the same method.This paper presented a new method based on interpolating LOOP subdivision surfaces.Gave a triangular mesh M,the main idea was to iteratively upgrade the vertices of M to generate a new control mesh such that limit surface of would interpolate M.The new vertex was bound through the constraint solving of its adjacent vertices.It could be shown that the iterative process was convergent for LOOP subdivision surfaces.As new vertex was generated by constraint solving of its adjacent vertices,essentially it was a local method.Hence,the method was well-defined.The new method has the advantages of both a local method and a global method,it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes.The meshes considered here can be open or closed.
出处 《计算机应用研究》 CSCD 北大核心 2011年第2期766-768,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60173055)
关键词 几何模型 LOOP细分曲面 局部和全局方法 渐进插值 约束求解 geometric modeling LOOP subdivision surface local and global method progressive interpolation constraint solving
  • 相关文献

参考文献6

  • 1LOOP C. Smooth subdivision surfaces based on triangles [D].Utah:University of Utah, 1987.
  • 2HALSTEAD M, KASS M, DEROSE T. Efficient, fair interpolation using Catmull-Clark surfaces[C]//Proc of the 20th SIGGRAPH. 1993:47-61.
  • 3ZHENG Jian-min, CAI Y Yi-yu. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme[J].IEEE Trans on Visualization and Computer Graphics, 2006, 12(3): 301-310.
  • 4LAI Shu-hua, CHENG F. Similarity based interpolation using Catmull-Clark subdivision surfaces[J].The Visual Computer, 2006,22(9):865-873.
  • 5ZORIN D, SCHRODER P, DEROSE T. Subdivision for modeling and animation[C]//Proc of SIGGRAPH. 2006:30-50.
  • 6Fu-Hua (Prank) Cheng,Feng-Tao Fan,Shu-Hua Lai,Cong-Lin Huang,Jia-Xi Wang,雍俊海.Loop Subdivision Surface Based Progressive Interpolation[J].Journal of Computer Science & Technology,2009,24(1):39-46. 被引量:18

二级参考文献22

  • 1Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 1978, 10(6): 350 355.
  • 2Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 1978, 10(6): 356-360.
  • 3Loop C. Smooth subdivision surfaces based on triangles [Master' Thesis]. Dept. Math., Univ. Utah, 1987.
  • 4Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control. A CM Trans. Graphics, 1990, 9(2): 160-169.
  • 5Zorin D, SchrSder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. Computer Graphics, Ann. Conf. Series, 1996, 30: 189-192.
  • 6Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum, 1996, 5(3): 409-420.
  • 7Halstead M, Kass M, DeRose T. Efficient, fair interpolation using Catmull-Clark surfaces. In Proc. SIGGRAPH 1993, Anaheim, USA, August 1-6, 1993, pp.47 61.
  • 8Nasri A H. Surface interpolation on irregular networks with normal conditions. Computer Aided Geometric Design, 1991, 8:89 -96.
  • 9Zheng J, Cai Y Y. Interpolation over arbitrary topology meshes using a two-phase subdivision scheme. IEEE Trans. Visualization and Computer Graphics, 2006, 12(3): 301-310.
  • 10Lai S, Cheng F. Similarity based interpolation using Catmull- Clark subdivision surfaces. The Visual Computer, 2006, 22(9): 865-873.

共引文献17

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部