期刊文献+

一种改进的多关节目标跟踪算法

Improved multi-articulated object tracking algorithm
下载PDF
导出
摘要 为提高多关节物体的跟踪效率和精确度,提出了一种目标跟踪算法。首先建立多关节物体的团结构模型,模型的建立结合团势函数等有效降低了传统图模型的冗余度,并结合目标物理的深度、边缘、颜色等信息,利用K-means、Mean-shift算法、粒子滤波实现目标跟踪。实验结果表明,该推理算法能够提高跟踪效率,有较强的鲁棒性,能够满足多关节目标的跟踪要求。 In order to improve the tracking efficiency and precise of multi-articulated object tracking,this paper proposed an algorithm of object tracking.Firstly constructed a graphical model that employed clique potentials which to denote multi-articulated object,since it made use of clique potential function etc.To reduce the complexity of graphical model such as traditional graphical model,and it also combined some information such as depth,edges,colors.Then it ultilized the K-means,Mean-shift algorithm and particle filtering to track mobile.Experiment results show that the proposed algorithm maintains the high precision and the ability to control the occlusion,and it can meet requirements of mutil-articulated object tracking.
作者 李伟群
出处 《计算机应用研究》 CSCD 北大核心 2011年第2期772-775,共4页 Application Research of Computers
关键词 多关节目标跟踪 团结构 K-均值 MEAN-SHIFT 粒子滤波 multi-articulated object tracking clique structure K-means algorithm Mean-shift algorithm particle filtering
  • 相关文献

参考文献14

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2刘棠丽,吴心筱,梁玮,贾云得.基于非参数信念传播的可行C-空间关节人手跟踪方法[J].计算机辅助设计与图形学学报,2008,20(4):476-481. 被引量:13
  • 3SUDDERTH E B, MANDEL M I, FREEMAN W T, et al. Visual hand tracking using nonparametric belief propagation[C]//Proc of Computer Vision and Pattern Recognition Workshop. Washington DC:IEEE Computer Society, 2004:189-197.
  • 4李伟群,邬家炜.基于团结构的三维关节人手跟踪方法[J].计算机工程,2010,36(23):186-188. 被引量:1
  • 5TATIKONDA S C, JORDAN M I. Loopy belief propagation and Gibbs measures[C]//ADNAN D, NIR F. Proc of the 18th Conference on Uncertainty in artificial intelligence. SanFrancisco:Morgan Kaufmann, 2002:493-500.
  • 6HAN T X, NING H, HUANG T S. Efficient nonparametric belief propagation with application to articulated body tracking[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2006:214-221.
  • 7石华伟,夏利民.基于Mean Shift算法和粒子滤波器的人眼跟踪[J].计算机工程与应用,2006,42(19):26-28. 被引量:11
  • 8蒋旻,许勤,尚涛,高伟义.基于粒子滤波和Mean-shift的跟踪算法[J].计算机工程,2010,36(5):21-22. 被引量:15
  • 9YEDIDIA J S, FREEMAN W T, WEISS Y. Understanding belief propagation and its generalizations[M]//LAKEMEYER G, NEBEL B. Exploring artificial intelligence in the new millennium. San Francisco:Morgan Kaufmann, 2002:239-269.
  • 10SUDDERTH E B, IHLER A T, FREEMAN W T, et al. Nonparame-tric belief propagation[C]//Proc of IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2003:605-612.

二级参考文献172

  • 1袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 2Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1819.
  • 3Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings on Radar and Sonar Processing, 1993, 140(2): 107-113.
  • 4Czyz J, Ristic B, Macq B. A particle filter for joint detection and tracking of color objects. Image and Vision Computing, 2007, 25(8): 1271-1281.
  • 5Pantrigo J J, Sanchez A, Montemayor A S, Duarte A. Multidimensional visual tracking using scatter search particle filter. Pattern Recognition Letters, 2008, 29(8): 1160-1174.
  • 6Ryu H R, Huber M. A particle filter approach for multitarget tracking. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007. 2753-2760.
  • 7Tweed D, Calway A. Tracking many objects using subordinate condensation. In: Proceedings of British Machine Vision Conference. Cardiff, UK: Springer, 2002. 283-292.
  • 8Vermaak J, Doucet A, Perez P. Maintaining multi-modality through mixture tracking. In: Proceedings of the 9th International Conference on Computer Vision. Washington D. C., USA: IEEE, 2003. 1110-1116.
  • 9Okuma K, Taleghani A, de Freitas N, Little J J, Lowe D G. A boosted particle filter: multitarget detection and tracking. In: Proceedings of European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 28-39.
  • 10Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.

共引文献322

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部