期刊文献+

基于辅助阵元的方位依赖幅相误差最大似然自校正:针对确定信号模型 被引量:5

Maximum likelihood self-calibration for direction-dependent gain-phase errors with carry-on instrumental sensors:case of deterministic signal model
下载PDF
导出
摘要 针对确定信号模型条件下方位依赖幅相误差的自校正问题,给出了一种基于辅助阵元的方位依赖幅相误差最大似然自校正方法;针对最大似然估计器中出现的高维非线性优化问题,推导了一种改进型交替投影迭代算法,从而实现了信号方位和方位依赖幅相误差的优化计算。此外,还推导了信号方位和方位依赖幅相误差的无偏克拉美罗界(CRB)。仿真实验结果验证了新方法的有效性和优越性。 Aim at the self-calibration of direction-dependent gain-phase errors in case of deterministic signal model,the maximum likelihood method(MLM) for calibrating the direction-dependent gain-phase errors with carry-on instrumental sensors was presented.In order to maximize the high-dimensional nonlinear cost function appearing in the MLM,an improved alternative projection iteration algorithm,which could optimize the azimuths and direction-dependent gain-phase errors was proposed.The closed-form expressions of the Cramér-Rao bound(CRB) for azimuths and gain-phase errors were derived.Simulation experiments show the effectiveness and advantage of the novel method.
出处 《通信学报》 EI CSCD 北大核心 2011年第2期34-41,47,共9页 Journal on Communications
关键词 最大似然方法 自校正 幅相误差 辅助阵元 方位依赖 克拉美罗界 maximum likelihood method self-calibration gain-phase errors instrumental sensors direction-dependent Cramér-Rao bound
  • 相关文献

参考文献3

  • 1PESAVENTO M, GERSHMAN A B, WONG K M. Direction finding in partly calibrated sensor arrays composed of multiple subarrays[J]. IEEE Trans on SP, 2002, 50(9): 2103-2115.
  • 2FERREOI A, LARZABAL P, VIBERG M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC[J]. IEEE Trans on SP, 2006, 54(3): 907-920.
  • 3王布宏,王永良,陈辉,郭英.方位依赖阵元幅相误差校正的辅助阵元法[J].中国科学(E辑),2004,34(8):906-918. 被引量:40

二级参考文献12

  • 1[1]Schmidt R O.Multilinear atray manifoldinterpolation.IEEE Trans on SP Vol 40 No.4,857~866,Apr 1992
  • 2[2]Weiss A J, Friedlander B. Manifold interpolation for diversely polarized arrays. IEE Proc Radar, Sonar, and Navigation Vol 141 No. 1, 19~24, Feb 1994
  • 3[3]Hung E. Matrix-Construction calibration method for antenna arrays. IEEE Trans on AES Vol 36 No.3,819~828, July 2000
  • 4[4]Ng B C, See C M S. Sensor-array calibration using a maximum-likelihood approach. IEEE Trans AP Vol 44No.6 Jun 1996, 827~835
  • 5[5]Stavropoulos K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling. In: Proceedings of the EUSIPCO 2000, Vol Ⅲ, 417~1420 Finland
  • 6[6]Zhang Ming, Zhu Zhao-Da. DOA estimation with sensor gain, phase and position perturbations. Proc,IEEE NAECON 1993, 67~69
  • 7[7]Fistas N, Manikas A. A New General Global Array Calibration Method. ICASSP 1994, Vol 4, 73~76
  • 8[8]Weiss A J, Friedlander B. Self-Calibration for High-Resolution Array Processing. in Advances in Spectrum and Array Processing, Vol Ⅱ, Haykon S, ed., Ch. 10, Englewood Cliffs, NJ: Prentice-Hall, 1991
  • 9[9]Friedlander B, Weiss A J. Direction finding in the presence of mutual coupling. IEEE Trans AP Nov 39 No.3,273~284, Mar 1991
  • 10[10]Flanagan B. P, Bell K L. Improved array self-calibration with large sensor position errors for closed space sources. Proc. 2000 Sensor Array and Multichannel workshop, Cambridge, MA, March 2000, 484~488

共引文献39

同被引文献31

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部