期刊文献+

覆冰导线舞动的非线性数值模拟 被引量:2

Nonlinear Numerical Simulation for Galloping of Icing Conductor
下载PDF
导出
摘要 基于覆冰导线所受空气动力的特殊性和导线大幅运动的几何非线性,采用具有3个平动自由度和1个扭转自由度的二节点单元获得覆冰导线非线性动力学有限元方程,并采用对加速度中心差分、对速度向后差分的时间积分法求解有限元方程,编制了相应的计算程序,并以算例验证该方法的正确性。 Based on the geometrical non-linearity of icing conductor by large amplitude motion and particularity caused by aerodynamic force,two-node cable element with three-translational and one-torsion degrees-of-freedom at each node is applied to establish nonlinear dynamic finite element equation of icing conductor.In the procedure of numerical simulation,the finite element equation is solved by time integration method,which the central difference method is used to deal with acceleration and the velocity is handled by backward difference method.At the same time,the finite element program is developed.Finally,numerical examples verify the effectiveness of the proposed method.
出处 《水电能源科学》 北大核心 2011年第2期161-163,共3页 Water Resources and Power
关键词 覆冰导线 舞动 几何非线性 有限元 数值模拟 icing conductor galloping geometric nonlinear finite element numerical simulation
  • 相关文献

参考文献6

  • 1Den Hartog J P. Transmission Line Vibration Due to Sleet[J]. AIEE Transaction, 1932,51: 1 074- 1 076.
  • 2Nigol O, Clarke G J. Conductor Galloping and its Control Based on Torsional Mechanism[J]. Ontario Hydro Research Quarterly, 1974,26(2) :31-41.
  • 3Desai Y M, Yu P, Popplewell N,et al. Finite Element Modeling of Transmission Line Galloping[J]. Computers and Structures,1995,57(3) :407-420.
  • 4何锃,钱天虹.覆冰三分裂导线扭控舞动的分析计算[J].华中理工大学学报,1998,26(10):16-18. 被引量:12
  • 5Veletsos A S, Darbre G R. Dynamic Stiffness of Parabolic Cables [J]. Earthquake Engineering Structure Dynamics, 1983,11 (3) : 367-401.
  • 6Edwards A T, Madeyski A. Progress Report on the Investigation of Galloping of Transmission Line Conductors[J].AIEE Transactions, 1956,75 (3) : 666-686.

二级参考文献1

共引文献11

同被引文献33

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部