期刊文献+

基于学习的规划技术研究

Research of Learning-based Planning Techniques
下载PDF
导出
摘要 经过近十多年的努力,现代智能规划器无论是效率还是处理能力均得到了极大提高。鉴于现有规划理论的局限性,进一步提高现有规划技术效率已愈显困难。现有的大多数规划器均不具备学习能力,无法从先前求解经验中学习有用知识。综述了基于学习的规划技术的发展现状,然后重点介绍了规划大赛中最佳学习器所使用的学习技术,最后指出当前基于学习的规划技术研究领域中存在的主要问题。 After nearly 10 years of effort,the mordern smart planner,whether its efficiency or processing capacity,all have been greatly enhanced.Subject to the limitations of current planning theory,to further enhance the efficiency of exi-sting planning techniques under current framework has become more difficult.Existing planners have not to learn ability,most of them,can not learn from previous experience,useful knowledge to solve.In this paper,we first review the development of planning techniques to learn,and then focused on learning techniques used on the best learning-based planner among international planning competition,concluded the main problems and challenges in current learning technology research of planning.
出处 《计算机科学》 CSCD 北大核心 2011年第1期15-19,61,共6页 Computer Science
基金 国家自然科学基金(60773201)资助
关键词 智能规划 基于学习的规划技术 规划器 Intelligent planning Learning-based planning techniques Smart planner
  • 相关文献

参考文献24

  • 1Fox M, Thiebaux S. Advances in Automated Plan Generation [J].Artificial Intelligence, 2009,173(5/6) : 501-788.
  • 2国际智能规划大赛网址[EB/OL].http://ipc.informatik.uniffeiburg.de/,2008.
  • 3智能规划器的部分列表[EB/OL].http.//www.aiai.ed.ac.uk/links/planning, html.
  • 4http://planning, cis. strath, ac. uk/plansig/index, php? page= planners.
  • 5http://www. csc. nesu. edu/ -aculty/stamant/planning-resources. html.
  • 6Bylander T. The computational complexity of propositional STRIPS planning[J].Artificial Intelligence, 1994, 69 (1/2): 165- 204.
  • 7Bacchus F, Kabanza F. Using temporal logics to express search control knowledge for planning[J]. Artificial Intelligence Journal, 2000,16:123-191.
  • 8Nau D, Cao U, Lotem A, et al. Shop:Simple hierarchical ordered planner[C] // Proceedings of the International Joint Conference on Artificial Intelligence. 1999 : 968-973.
  • 9Fikes R E, Nilsson N J. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving[J]. Artif. Intell. ,1971,2(3/4):189 -208.
  • 10Minton S, Carbonell J, Knoblock C A, et al. Explanation based learning:A problem solving perspective[J].Artificial Intelligence Journal, 1989,40:63-118.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部