期刊文献+

一种基于决策粗糙集的自动聚类方法 被引量:2

Novel Autonomous Clustering Method Based on Decision-theoretic Rough Set
下载PDF
导出
摘要 提出了一种基于决策粗糙集的面向知识的自动聚类方法。在面向知识的聚类算法中,获取初始聚类结果依赖人工阈值的设置。为此,首先根据物理学知识提出了一种差值排序方法来自动得到阈值。另外,讨论了决策粗糙集模型的损失函数,提出了一种聚类评估方法;通过对聚类结果的评估来实现自动聚类。实验结果表明新方法是有效的。 This paper proposed an autonomous knowledge-oriented clustering method based on decision-theoretic rough set model.In order to obtain the initial clustering,the initial threshold values need to set in the knowledge-oriented clustering framework.Thus,a novel method,sort difference,was proposed to produce the initial threshold values autonomously in view of physics theory.Then,a cluster validity index based on the decision-theoretic rough set model was developed by considering various loss functions,which can estimate the quality of clustering.The results of experiments show that the new approach is valuable.
作者 于洪 储双双
出处 《计算机科学》 CSCD 北大核心 2011年第1期221-224,共4页 Computer Science
基金 重庆市科委项目(CSTC 2009BB2082) 重庆市教委项目(KJ080510)资助
关键词 聚类 面向知识 决策粗糙集 自动 Clustering Knowledge-oriented Decision-theoretic rough set Autonomous
  • 相关文献

参考文献15

  • 1Asharaf S,Murty M N. An adaptive rough fuzzy single pass algorithm for clustering large data sets[J].Pattern Recognition, 2003(36) :3015-3018.
  • 2Bean C, Kambhampati C. Knowledge-Based Clustering: A Semi-Autonomous Algorithm Using Local and Global Data Properties [J]. IEEE International Joint Conference on Neural Networks, 2004,11 (3):95-100.
  • 3Bean C, Kamhhampati C. Autonomous clustering Using Rough Set Theory[J]. International Journal of Automation and Computin, 2008,5 (1) : 90-102.
  • 4Halkidi M, Batistakis Y, Vazirgianni M. Clustering Validity Checking Methods: Part II[J]. ACM SIGMOD Conf. Record, 2002, 31(3):19-27.
  • 5Hirano S, Tsumoto S A. Knowledge-oriented Clustering Technique Based on Rough Sets[C]//Proceedings of 25th IEEE International Conference on Computer and Software Applications. Chicago, USA, 2001 : 632-637.
  • 6Lingras P, Chen M, Miao D Q. Rough Cluster Quality Index Based on Decision Theory[J].IEEE Transactions on Knowledge and Data Engineering, 2009,21 (7) : 1014-1026.
  • 7殷钢,苗夺谦,段其国.一种新的粗糙Leader聚类算法[J].计算机科学,2009,36(5):203-205. 被引量:6
  • 8Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982 ( 11 ) :341-356.
  • 9郑吉,苗夺谦,王睿智,钟才明.一种基于粗糙集理论的谱聚类算法[J].计算机科学,2009,36(5):193-196. 被引量:4
  • 10Serban G, Campan A. Hierarchical Adaptive Clustering[J].Informatica, 2008,19(1) : 101-112.

二级参考文献31

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 4Thcodoridis S,Koutroumbas K.Pattern Recognition[M].李晶皎,译.北京:电子工业出版社,2004
  • 5Spath H.Cluster Analysis Algorithms for Data Reduction and Classification of Objects[M].Chichester:Ellis Horwood Limited,1980
  • 6Gowda K C,Diday E.Symbolic Clustering Using a New Dissimilarity Measure[J].Pattern Recognition,1991,24(6):567-578
  • 7Bach R,Jordan M L Learning spectral clustering[R].UCB/ CSD-03-1249.University of California at Berkeley,2003
  • 8Hagen L,Kahng A B.New spectral methods for ratio cut partitioning and clustering[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1992,11 (9):1074-1085
  • 9Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22 (8):888-905
  • 10Ding C H Q,He X,Zha H,et al.A rain-max cut algorithm for graph partitioning and data clustering[C] // Cercone N,Lin T Y,Wu X,eds.ICDM 2001.Los Alamitos,California:IEEE Computer Society,2001:107-114

共引文献1091

同被引文献27

  • 1陈小荷.从自动句法分析角度看汉语词类问题[J].语言教学与研究,1999(3):63-72. 被引量:23
  • 2Boley D, Gini M, Gross R, et al. Partitioning - based Clustering for Web Document Categorization [ J ]. Decision Support Systems, 1999, 27(3) :329 -341.
  • 3Mao J, Jain A K. A Self- organizing Network for Hypellipsoidal Clustering [J]. 1EEE Transactions on Neural Networks, 1996, 7 (1) :16 -29.
  • 4I Cai W, Chen S, Zhang D. Fast and Robust Fuzzy C - means Clus- tering Algorithms Incorporating Local Information for Image Seg- mentation[ J ]. Pattern Recognition, 2007, 40(3 ) :825 - 838.
  • 5Chen H H, Lin C J. A Multilingual News Summarizer[ C]. In: Proceedings of the 18th International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguis- tics, 2000 : 159 - 165.
  • 6Leftin L J. Newsblaster Russian - English Clustering Performance Analysis [ R ]. Columbia Computer Science Technical Reports, 2003.
  • 7Evans D K, Klavans J L, McKeown K R. Columbia Newsblaster: Muhilingual News Summarization on the Web Demonstration [ C ]. In : Proceedings of HLT - NAACL 2004. Stroudsburg: Association for Computational Linguistics, 2004 : 1 -4.
  • 8Mathieu B, Besancon R, Fluhr C. Muhilingual Document Clusters Discovery [ C] . In : Proceedings of RIAO 2004. 2004 : 116 - 125.
  • 9Dhillon 1 S, Mallela S, Kumar R. A Divisive Information Theoretic Feature Clustering Algorithm for Text Classification [ J ]. The Jour- nal of Machine Learning Research,2003,3 ( 1 ) : 1265 - 1287.
  • 10Marcus M P, Marcinkiewicz M A, Santorini B. Building a Large An- notated Corpus of English : The Penn Treebank [ J ]. Computational Linguistics, 1993,19 ( 2 ) :313 - 330.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部