期刊文献+

一种新的网格重叠差分盒分形模型 被引量:1

New Fractal Model of Grid Overlapping Differential Box-counting
下载PDF
导出
摘要 分形维数一个最重要的特性是其维数大小与人眼感觉图像表面的粗糙程度有很大的相关性,分形在图像的纹理分析、图像的分割与分类等方面有着很多成功的运用。在基于分形理论提出的分形维数的估计方法中,差分盒法是一种经常被使用的分形维数估计技术。研究发现差分盒法对细致纹理的最小二乘法线性拟合度比较好,但是对较为粗糙的纹理其最小二乘法的线性拟合度不够理想,估计出的分形维数往往失真。为了解决这个问题,提出了一种网格重叠差分盒模型,用以计算差分盒的盒子数的网格在一定程度上重叠,计算整个图像统计自相似意义上的盒子数,其最小二乘法的线性拟合度比较好。为了进一步提高差分盒的盒子计数精度,提出了非整数盒子计数法,修正了缩放尺度,试验证明其能更真实地反映纹理的分形维数。 One of the most important feature of the fractal dimension is that its fractal dimension is largely correlated with the surface roughness of image feeled by the human eye.The fractal has many successful applications in analysis,segmentation and classification of images,the differential box-account method is often used in the fractal dimension estimation based on fractal theory.Least-squares is better for detailed textures,but is not satisfactory for more coarse textures,in order to solve this problem,overlapping grid differential box-account model was presented,the grids which the numbers of the boxes are calculated by are overlapped,the numbers of boxes of the whole image are calculated on the statistical self-similarity.Linear fit of least-square of this model is better,in order to improve the precision of box-coun-ting,non-integer box-counting and zoom-scale-fixing were presented,the fractal dimension of the image texture got by the model was validated,compared with differential box-account.
出处 《计算机科学》 CSCD 北大核心 2011年第1期282-285,共4页 Computer Science
基金 国家科技部支撑计划课题-水上溢油遥感识别与监测技术(2006BAC11B01) 海洋局重点实验室开放研究基金(200809)资助
关键词 分形维数 差分盒 粗糙纹理 Fractal dimension Different box account Coarse texture
  • 相关文献

参考文献17

二级参考文献68

共引文献31

同被引文献10

  • 1Pentland A. Fractal based description of nature scenes [j ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(6) :661- 674.
  • 2Peleg S,Naor J, Hartley R.et al. Multiple resolution texture a- nalysis and classification [J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence,1984,6(4) :518-523.
  • 3Gangepain J,Roques-Carmes C. Fractal approach to two dimen- sional and three dimensional surface roughness [J]. Wear, 1986, 109:119-126.
  • 4Backes R,Casanova D, Bruno M. Color texture analysis based on fractal descriptors [J]. Pattern Recognition, 2012,45 : 984-1992.
  • 5Sarker N, Chaudhuri B. An efficient differential box-counting approach to compute fractal dimension of image [J]. IEEE Transactions on Systems.Man,and Cybernetics, 1994.24:115-120.
  • 6Tsompanaki I,Manousaki G, Manios G, et al. Use of color tex- ture in determining the nature of melanocytic skin lesions--A qualitative and quantitative approach [J]. Comput. Biol. Med. , 2006,36:416-427.
  • 7http://vismod, media, mit. edu/vismod/imagery/VisionTexture/ vistex, html.
  • 8Ivanovici M, Richard N. Fractal Dimension of Color Fractal Ima- ges [J] IEEE Transctions on images processing, 2011,20 ( 1 ) : 227-235.
  • 9Zhang H, Hu Y, Lan X, et al. Fuzzy fractal dimension of com- plex networks [J]. Applied Soft Computing,2014,25(11):514-518.
  • 10黄仁,胡敏.综合颜色空间特征和纹理特征的图像检索[J].计算机科学,2014,41(S1):118-121. 被引量:14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部