期刊文献+

Ti3AlC2陶瓷的摩擦稳定性及其对载流磨损率的影响

Friction stability of Ti3AlC2 ceramic and its effect on current-carrying wear
下载PDF
导出
摘要 研究了载流及不载流条件下Ti3AlC2陶瓷块体对低碳钢的滑动摩擦稳定性及其与载流磨损率的相关性。试验在盘.块式高速载流摩擦磨损试验机上进行,滑动速度为20-60m/s,法向压强为0.4-0.8MPa,载流强度为2A/mm^2。结果表明:不载流条件下滑动速度和法向压强的改变对摩擦的稳定性和Ti3AlC2块体的磨损率只有微弱的影响,而载流条件下有显著的影响;载流条件下,滑动速度越高或法向压强越小,摩擦的稳定性越低,磨损率越大,作为摩擦稳定性表征量的动摩擦系数标准偏差与载流磨损率之间存在强的线性相关性。但是,当滑动速度约大于50m/s或者法向压强约小于0.5MPa的情况下,Ti3AlC2块体的载流磨损率急剧增大。 The stability of the friction of a highly pure Ti3AlC2 bulk (with or without current-carrying) against the low carbon steel and its effect on the current-carrying wear were investigated. The experiments were performed on a block-on-disk type friction tester, with the sliding speed of 20- 60m/s, the normal pressure of 0.4- 0.8MPa and the current-carrying ability of 2A/mm^2. The results showed that the stability of friction and the wear rate of Ti3AlC2 were only slightly affected by the changes of the sliding speed and the normal pressure in the conditions of without current-carrying. However, a significant impact was caused under the current-carrying conditions. The stability of friction decreased with the increasing of the sliding speed or the decreasing of the normal pressure, with the higher stability corresponding to the lower wear rate under current-carrying friction. The standard deviation of the kinetic friction coefficient, as a characterization of stability, showed a strong linear correlation with the wear rate. However, when the sliding speed was higher than about 50m/s or the normal pressure was less than about 0.5MPa, the current-carrying wear rate of Ti3AlC2 increased rapidly.
出处 《高技术通讯》 CAS CSCD 北大核心 2011年第1期106-110,共5页 Chinese High Technology Letters
基金 863计划(2006AA33208Z527)和973计划(2007CB714700)资助项目.
关键词 Ti3AlC2陶瓷 摩擦稳定性 载流磨损 动摩擦系数标准偏差 电弧烧蚀 titanium aluminum carbide, stability of friction, current-carrying wear, standard deviations of kinetic friction coefficients, electric are ablation
  • 相关文献

参考文献12

  • 1Barsoum M W. The Mn+1AXn phases: a new class of solids. Progress in Solid State Chemistry, 2000, 28:201-281.
  • 2Barsoum M W, EI-Raghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. Journal of the American Ceromie Society, 1996, 79(7) : 1953-1956.
  • 3Tzenov N V, Barsoum M W. Synthesis and characterization of Ti3AlC2. Journal of the American Ceramic Society, 2000, 83 (4) : 825-832.
  • 4Zhai H X, Huang Z Y, Zhou Y, et al. Frictional layer and its antifriction effect in high-purity Ti3SiC2 and TiC-contained Ti3SiC2. Key Engineering Materials, 2004, 280-283: 1347- 1352.
  • 5Zhai H X, Huang Z Y, Ai M X, et al. Tribophysics properties of bulk polycrystalline Ti3AlC2. Journal of the American Ceramic Society,2005,88(11) : 3270-3274.
  • 6Zhai H X, Huang Z Y, Ai M X, et al. Tribological behaviors of bulk Ti3SiC2 and influences of TiC impurities, Materials Science and Engineering : A, 2006, 435-436 : 360-370.
  • 7Zhai H X, Huang Z Y, Zhou Y, et al. Ti3AlC2-A soft ceramic exhibiting low friction coefficient. Materials Science Forum, 2005, 475-479:1251-1254.
  • 8周韡,翟洪祥,黄振莺,管明林.钛铝碳的高速摩擦特性及摩擦氧化行为[J].硅酸盐学报,2006,34(5):523-526. 被引量:11
  • 9黄振莺 翟洪祥 王轶凡等.Ti3AlC2的滑动摩擦系数与摩擦表面的氧化行为[J].稀有金属材料与工程,2005,34(1):401-404.
  • 10Zhai H X, Huang Z Y. Instabilities of sliding friction governed by asperity interference meehanisms. Wear, 2004, 257 : 414-422.

二级参考文献14

  • 1BARBER J R.Thermoelastic instabilities in the sliding of conforming solids[J].Proc Roy Soc A,1969,312(25):381-394.
  • 2ZHAI Hongxiang,HUANG Zhenying,ZHOU Yang,et al.Frictional layer and its antifrictioneffect in high-purity Ti3SiC2 and TiC-contained Ti3SiC2[J].Key Eng Mater,2005,280-283:1347-1 352.
  • 3ZHAI Hongxiang,HUANG Zhenying,ZHOU Yang,et al.Ti3AlC2-a soft ceramic exhibiting lowfriction coefficient[J].Mater Sci Forum,2004,475-479(2):1 251-1 254.
  • 4ZHAI Hongxiang,HUANG Zhenying,AI Mingxing,et al.Tribophysical properties ofpolycrystalline bulk Ti3AlC2[J].J Am Ceram Soc,2005,88(11):3 270-3 274.
  • 5ZHAI Hongxiang,HUANG Zhenying.Instabilities of sliding friction governed by asperity interference mechanisms[J].Wear,2004,257(3-4):414-422.
  • 6VARDAVOULIAS M,DURAND J M,JEANDIN M.Role of reinforcing ceramic particles in the wearbehaviour of polymer-based model composites[J].Wear,1995,181-183(2):833-839.
  • 7HSU S M,LIM D S,WANG Y S,et al.Ceramic wear maps:concept and method develpment[J].Lubr Eng,1991,47(1):49-54.
  • 8LEE S W,HSU S M,MUNRO R G.Ceramic wear maps:SiC whisker reinforcedalumina[A].In:ROHATGI P K,BLAU P J,YUST C S,eds.Tribology of Composite Materials,ASM International[C],Metals Park,OH,USA,1990.p35.
  • 9LEE S W,HSU S M,SHEN M C.Ceramic wear maps:zirconia[J].J Am Ceram Soc,1993,76(8):1937.
  • 10GREENWOOD J A,WILLIAMSON J B P.Contact of nominally flat surfaces[J].Proc Roy Soc A,1966,295(19):300-319.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部