期刊文献+

三种判别分析方法在元音库上的分类

Classification About Vowel Database Using Discriminant Analysis Methods
下载PDF
导出
摘要 分别用降秩线性判别分析(RRLDA)、降秩二次判别分析(RRQDA)和主成分分析+线性判别分析(PCA+LDA)三种模型对数据进行了分析,并在元音测试数据集上进行了测试。分别画出了这三种模型的误分类率曲线,画出了RRLDA和PCA+LDA分别降至二维后的最优分类面。从实验结果中可以发现,RRLDA模型的实验结果优于PCA+LDA模型,而RRQDA的误分类率相当的高,这是因为PCA在降维过程中仅仅要求数据分散,而忽略了数据的类内和类间的信息。同时,曲线提示RRLDA在子空间的维数取2时具有最好的泛化能力,PCA+LDA在子空间的维数取4时具有最好的泛化能力,RRQDA在第10维才有最好的检验误差率。 The paper analyzes vowel data using reduced-rank linear discriminant analysis (RRLDA), reduced-rank quadratic discriminant analysis (RRQDA) and principal component analysis plus linear discriminant analysis (PCA+LDA). Then it drew some curves of false classification about the three model. A curved surface of the best classification has drawn for RRLDA and PCA+LDA after reduced rank to two dimensions. From the result, it can be conclude that RRLDA is good than PCA+LDA. The false classification of RRQDA is considerably big, because PCA ignores the information of classification about data and only disperses data during reducing rank. Simultaneously these curves prompts RRLDA owning the best generalizing ability when its dimension is 2 in subspace, and PCA+LDA owning the best generalizing ability when its dimension is 4 in subspace, and RRQDA owning the best verify error rate in tenth dimension.
出处 《计算机系统应用》 2011年第2期75-79,共5页 Computer Systems & Applications
基金 浙江省教育厅项目(Y200803141)
关键词 元音 降秩 判别分析 主成分分析 vowel classification reduced-rank discriminant analysis PCA
  • 相关文献

参考文献6

二级参考文献23

  • 1陈振洲,李磊,姚正安.基于SVM的特征加权KNN算法[J].中山大学学报(自然科学版),2005,44(1):17-20. 被引量:51
  • 2RABINER L, JUANG B. Fundamentals of speech recognition [ M ]. Englewood Cliffs: Prentice Hall Press, 1996.
  • 3HUANG X. ACERO A, HON H. Spoken language processing: a guide to theory, algorhhm and system development [ M]. Upper Saddle River: Prentice Hall Press, 2001.
  • 4SMITH N, GALES M, NIRANJAN M. Data deoendent kernels in SVM classification of speech pattems [ R ], Cambridge University Engineering Department, 2001.
  • 5BENGIO S, MARIETHOZ J. Learning the decision function for speaker verification[C]//'Proc ICASSP, 2001, 11425 - 428.
  • 6WAN V, RENALS S. Speaker verification using .sequence discriminate support vector machines [ J ]. IEEE transactions on speech and audio processing ,2005, 13(2): 203-210.
  • 7SMITH N, GALES M,Using SVMs and discriminative models for speech recognition[C]//Proc ICASSP 02.2002.1:I-80-I-778.
  • 8JAAKKOLA T, HAUSSLER D. Exploiting generative models in discriminative classifiers [ M]. Advances in Neural lnfomlation Processing Systems 11. Cambridge, U K: MIT Press, 1998.
  • 9DSP-STL, CUHK. CUTalk. http://dsp, ee. cuhk. edu. hk/html/ cutalk, html [ DB/OL].
  • 10Linguistic Society of Hong Kong (LSHK) . Hong Kong Jyut Ping Characters Table ( 粵语拼音字表 ) [ M]. Hong Kong: Linguistic Society of Hong Kong Press (香港语言学会出版), 1997.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部