期刊文献+

基于比例微分优化准则的拓扑优化方法 被引量:3

A Proportional and Differential Optimality Criterion Method for Topology Optimization
下载PDF
导出
摘要 在优化准则法的基础上,提出一种基于比例微分控制思想的优化准则方法(proportional anddifferential optimality criterion,PDOC),并将其运用到拓扑优化设计中。针对优化准则法求解速度慢以及因误差的未知性所引起的超调现象,PDOC法通过引入比例微分控制来改进迭代算子,构造更合理的数值迭代公式以加快收敛。利用加入比例微分控制的求解算法,计算新的材料密度分布,以预测误差的变化趋势,提前抑制误差,有效避免求解过程中的震荡和超调现象,进而提高求解速度。最后,通过实验验证了PDOC方法的有效性和正确性。 Based on optimality criterion method,a proportional and differential optimality criterion(PDOC) method was proposed and applied in topology optimization design.Since the phenomenon of low efficiency and overshoot caused by the uncertain deviation,this method introduced the proportional and differential control to improve the iteration operator,and constructed more reasonable iteration formula to accelerate the convergence.A new algorithm was utilized to calculate the density distribution of new material,so the trend of deviation can be predicted and corrected in advance.Finally,experimental results indicate that PDOC method is feasible and efficient.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2011年第3期345-350,共6页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50705032) 教育部新世纪优秀人才计划资助项目(NCET-08-0232) 国家高技术研究发展计划(863计划)资助项目(2007AA04Z120)
关键词 拓扑优化 优化准则法 迭代算子 比例微分控制 topology optimization optimality criteria method iteration operator proportional and differential control
  • 相关文献

参考文献10

  • 1罗震,陈立平,黄玉盈,张云清.连续体结构的拓扑优化设计[J].力学进展,2004,34(4):463-476. 被引量:154
  • 2Zhou M,Rozvany G I N. The COC Algorithm, Part Ⅱ: Topological Geometrical and Generalized Shape Optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89 : 197-224.
  • 3Levy R, Lavan O. Fully Stressed Design of Passive Controllers in Framed Structures for Seismic Loadings[J]. Structural and Multidisciplinary Optimization,2006,32(6) :485-498.
  • 4Meske R, Lauber B, Schnack E. A New Optimality Criteria Method for Shape Optimization of Natural Frequency Problems[J]. Structural and Multidisciplinary Optimization,2006,31(4):135-140.
  • 5Logo J. New Type of Optimality Criteria Method in Case of Probabilistic Loading Conditions[J]. Structural and Multidisciplinary Optimization, 2007, 35 (2): 147-162.
  • 6Chiandussi G, Codegone M, Ferrero S. Topology Optimization with Optimality Criteria and Transmissible Loads [J]. Computers and Mathematics with Applications,2009, 57: 772-788.
  • 7Rietz A. Sufficiency of a Finite Exponent in SIMP (Power Law) Method[J]. Structural and Muhidis cipline Optimization, 2001,21:159-163.
  • 8Stolpe M, Svanberg K. An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization[J]. Structural and Multidiscipline Optimization,2001,22:116-124.
  • 9罗震,陈立平,黄玉盈,张云清.基于RAMP密度-刚度插值格式的结构拓扑优化[J].计算力学学报,2005,22(5):585-591. 被引量:16
  • 10Frecker M, Ananthasuresh G K, Nishiwaki S, et al. Topological Synthesis of Compliant Mechanisms Using Multi -- criteria Optimization [J]. Mech. Des. Trans. ASME, 1997,119 (2):238- 245.

二级参考文献25

  • 1程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:86
  • 2刘书田,程耿东.复合材料应力分析的均匀化方法[J].力学学报,1997,29(3):306-313. 被引量:46
  • 3BENDSOE M P, KIKUCHI N. Generating optimal topology in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988,71:197-224.
  • 4BENDSOE M P, SIGMUND O. Topology Opti-mization: Theory, Methods, and Applications. Springer[M]. New York, 2003.
  • 5CHENG Geng-dong, GUO Xu. ε-relaxed approach in structural topology optimization[J]. Structural Optimization, 1997, 13:256-266.
  • 6SIGMUND O, PETERSSON J. Numerical Instabili-ties in Topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998,16:68-75.
  • 7STOLPE M, SVANBERG K. An alternative inter-polation scheme for minimum compliance topology optimization[J]. Structural and Multidiscipline Optimization, 2001,22:116-124.
  • 8ZHOU M, ROZVANY G I N. The COC algorithm, PartII: Topological, geometry and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering,1991, 89: 197-224.
  • 9SVANBERG K. The method of moving asymptotes: a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24: 359-373.
  • 10DIAZ A R, SIGMUND O. Checkerboard patterns in layout optimization[J]. Structural Optimization, 1995, 10: 40-45.

共引文献165

同被引文献18

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部