期刊文献+

基于MLE与流形学习的数据可视化方法

Data Visualization Method Based on MLE and Manifold Learning
下载PDF
导出
摘要 在一个给定的样本空间划分下,每个数据集是一个潜在的多项分布的抽样假设。通过对模型参数的最大似然估计,数据集的潜在分布近似于一个离散化的经验分布。根据推广的多项分布族的Fisher度量,潜在分布的信息差异可近似为经验分布间的差异,为基于MLE嵌入得到的信息流形上非监督学习创造了条件。当约简空间的维数为2或3时,原数据集之间的自然可分性可通过降维数据展现出来。实验结果表明,该方法能应用到大样本数据集或彩色图像等高维结构化数据的可视化。 The method is stemmed from the assumption that each data set is a probabilistic realization of an underlying multinomial distribution under a partition on sample space. With the MLE of model parameters, the underlying distribution of a data set can be approximated by a discretized probability distribution. With the generalized Fisher metric on multinomial manifold with boundary, the information divergence between underlying models can be approximated by the corresponding divergence between estimated distributions, it provides the necessary element for unsupervised learning on information manifold. The natural separation of original data sets can be visualized when the dimension of reduced space is two or three. Experimental result shows that the method can be applied to visualization of big sample data sets or color image data sets.
作者 邹健 刘传才
出处 《计算机工程》 CAS CSCD 北大核心 2011年第1期4-6,共3页 Computer Engineering
基金 国家自然科学基金资助项目(9082004) 国家"863"计划基金资助项目(2006AA04Z238) 安徽自然科学基金资助项目(KJ2007B056)
关键词 多项分布 最大似然估计 流形学习 数据可视化 multinomial distribution maximum likelihood estimation manifold learning data visualization
  • 相关文献

参考文献7

  • 1van der M L J P, Postma E O, van den H H J. Dimensionality Reduction: A Comparative Review[R]. Tilburg, Netherlands: Tilburg Centre for Creative Computing, Tilburg University, Technical Report: 2009-005, 2009.
  • 2Ferreira de Oliveira M C, Levkowitz H. From Visual Data Exploration to Visual Data Mining: A Survey[J]. IEEE Transactions on Visualization and Computer Graphics, 2003, 9(3): 378-394.
  • 3蒋润,周激流,雷刚,李晓华.基于有监督流形学习的正交投影降维[J].计算机工程,2009,35(23):207-208. 被引量:4
  • 4Kondor R. The Information Geometry of the Multinomial Distribution[EB/OL]. (2003-08-10). http://www.its.caltech.edu/-risi/notes/ multinomial.pdf.
  • 5Lee S M, Abbott A L, Araman P A. Dimensionality Reduction and Clustering on Statistical Manifolds[C]//Proc. of IEEE Conf. on Computer Vision and Pattern .Recognition. Minneapolis, USA: [s. n.], 2007: 1-7.
  • 6Lebanon G. Information Geometry, the Embedding Principle, and Document Classification[C]//Proc. of the 2nd International Symposium on Information Geometry and Its Applications. Tokyo Japan: [s. n.], 2005.
  • 7COIL-100 Database[EB/OL]. (2009-10-30). http://www.cs.columbia. edulCAVE/software/softlib/coil- 100.php.

二级参考文献5

  • 1Jolliffe I T. Principal Component Analysis[M]. New York, USA: Springer-Verlag, 1989.
  • 2Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000, (290): 2323-2326.
  • 3Kokiopoulou E, Saad Y. Face Recognition Using OPRA- faces[C]//Proc, of IEEE Int'l. Conf. on Machine Learning and Application. NY, USA: [s. n.], 2005:15-17.
  • 4Qing Xiangyun, Wang Xingyu. Face Recognition Using Laplacian+ OPRA-faces[C]//Proc. of IEEE Conf. on Intelligent Control and Automation. Dalian, China: [s. n.], 2006:10013-10016.
  • 5Zhao Qijun, Zhang David, Lu Hongtao. Supervised LLE in ICA Space for Facial Expression Recognition[C]//Proc. of International Conference on Neural Networks and Brain. Shanghai, China: Is. n.], 2005: 1970-1975.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部