期刊文献+

基于粗糙集和贝叶斯网络的作战效能评估 被引量:5

Operational Effectiveness Evaluation Based on Rough Set and Bayesian Networks
下载PDF
导出
摘要 针对部队作战不确定因素多、建模复杂的特点,提出一种作战行动效能的评估模型。运用粗糙集理论除去冗余的评估指标,降低朴素贝叶斯分类器的时空复杂度。给出该模型的评估算法步骤,通过贝叶斯网络的参数学习,将不同数据类型的评估指标统一在类条件概率分布中,既保证了评估的客观性,又较好地表达出作战过程随机性的特点。实例研究表明,将该方法用于作战行动效能的评估是可行的。 Aiming at the uncertain factors and the complexity of modeling in military operations, an operational effectiveness evaluation model is proposed. Using rough set theory removes redundant evaluation index and reduces the time and space complexity of Naive Bayesian classifier(NB). An algorithm of the assessment model is put forward. Through the Bayesian network parameter learning, different data types of assessment indexes are expressed in the class conditional probability distribution uniform. This way can not only guarantee the objectivity of the assessment but also express the randomicity of battle process. Instance research shows that the method used to assess the effectiveness of combat operations is feasible.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第1期10-12,15,共4页 Computer Engineering
基金 国家自然科学基金资助项目"基于训练效果的部队作战效能评估及作战计划制订方法研究"(70971137)
关键词 粗糙集 朴素贝叶斯分类器 效能评估 rough set Naive Bayesian classifier(NB) effectiveness evaluation
  • 相关文献

参考文献7

二级参考文献26

  • 1王月平,赵志强.任务空间概念模型研究的若干问题探讨[J].军事运筹与系统工程,2003,17(2):21-24. 被引量:7
  • 2马开城,张波,刘智慧.合同战术实兵演习系统设计[J].军事运筹与系统工程,2003,17(4):36-39. 被引量:2
  • 3宋祥斌,张宏军,郝玉龙.战场综合防护计算机评估系统[J].计算机工程,2005,31(2):206-208. 被引量:1
  • 4VapnikVN著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5John G H,kangley P.Estimating Continuous Distribution in Bayesian Classifiers[C].In:The 11th International Conference on Uncertainty in Artificial Intelligence,San Mateo,Morgan Kaufmann Publishers,1995:338~345
  • 6Dougherty J,Kohavi R,Sahami M.Supervised and Unsupervised Discretization of Continuous Features[C].In:The 12th International Conference on Machine Learning,San Francisco,CA:Kaufmann,1995:103~130
  • 7Fayyad U M,Irani K B.Multi-interval discretization of continuousvalued attributes for classification learning[C].In:The 13th International Joint Conference on Artificial Intelligence,San Francisco,CA:Morgan Kaufmann,1993:1022~1027
  • 8Murphy P M,Aha D W.UCI repository of machine learning database.http://www.ics.uci.edu/~mlearn/MLRepository.html
  • 9Hsu C N,Huang H J,Wong T T.Why discretization work for na(i)ve Bayesian classifiers[C].In:The 17th International Conference on Machine Learning(ICML-2000),Stanford,CA:Morgan Kaufmann,2000:399 ~406
  • 10Thomas L C.A survey of credit and behavioural scoring:forecasting financial risk of lending to consumers[J].International Journal of Forecasting,2000; 16:149~172

共引文献2284

同被引文献93

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部