期刊文献+

复杂网络社团的谱分检测方法 被引量:2

Spectral Approach of Identifying Communities in Complex Networks
下载PDF
导出
摘要 为有效地检测复杂网络中的社团结构,优化模块密度函数,展示模块密度函数怎样被优化框定到谱分聚类问题,提出一种谱分算法,进一步对该算法进行时间复杂度分析。在一个经典的真实世界网络中检验该算法,并与基于模块密度的直接核方法及基于模块函数的谱分方法做比较。特别地,当网络中社团结构变得模糊时,实验结果显示,该谱分算法在发现复杂网络社团上是有效的。 To detect community structure in complex networks, modularity density function is optimized. By optimizing process, how to optimize the D function can be reformulated as a spectral relaxation problem and a spectral clustering algorithm is proposed. Furthermore, the time complexity of.algorithm is analyzed. The approach is illustrated and compared with direct kernel approach based on modularity density and spectral clustering based on modularity by using a classic real world networks. Experimental results show the significance of the proposed approach, particularly, in the cases when community structure is obscure.
作者 付立东
出处 《计算机工程》 CAS CSCD 北大核心 2011年第1期31-33,共3页 Computer Engineering
基金 国家自然科学基金资助重点项目(60933009) 教育部高校博士点基金资助项目(200807010013)
关键词 社团结构 模块密度 核k-means方法 谱分方法 community structures modularity density kernel k-means approach spectral approach
  • 相关文献

参考文献9

  • 1王立敏,高学东,宫雨,马红权.基于相对密度的社团结构探测算法[J].计算机工程,2009,35(1):117-119. 被引量:12
  • 2熊中敏,黄冬梅.可多边并行移出的社团发现方法[J].计算机工程,2009,35(12):29-31. 被引量:6
  • 3付立东,高琳.模块密度谱分的网络社团发现方法[J].西安电子科技大学学报,2010,37(5):916-920. 被引量:6
  • 4Li Zhenping, Zhang Shihua, Wang Ruisheng, et al. Quantitative Function for Community Detection[J]. Physical Review E, 2008, 77(3).
  • 5Dhillon I S, Guan Yuqiang, Kulis B. Kernel k-means, Spectral Clusterng and Normalized Cuts[C]//Proc. of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2004: 551-556.
  • 6Luxburg U V. A Tutorial on Spectral Clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
  • 7Newman M E J. Finding Community Structure in Networks Using the Eigenvectors of Matrices[J]. Physical Review E, 2006, 74(3).
  • 8Rosvall M, Bergstrom C T. An Information-theoretic Framework for Resolving Community Structure in Complex Networks[J]. Proceedings of the National Academy of Science of USA, 2007, 104(18): 7327-7331.
  • 9Lusseau D, Schneider K, Boisseau O J, et al. The Bottlenose Dolphin Community of Doubtful Sound Features: A Large Proportion of Longlasting Associations[J]. Behav. Ecol. Sociobiol, 2003, 54(4): 396-405.

二级参考文献28

  • 1Newman M E J. Scientific Collaboration Networks Ⅱ: Shortest Paths, Weighted Networks, and Centrality[J]. Physical Review E, 2001, 64(1): 132-135.
  • 2Girvan M, Newman M E J. Community Structure in Social and Biological Networks[EB/OL]. (2002-06-11). http://www.pnas.org/ cgi/reprint/99/12/7821 .pdf?ck=nck.
  • 3Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2): 113.
  • 4Clauset A, Newman M E J, Moore C. Finding Community Structure in Very Large Networks[J]. Physical Review E, 2004, 70(6): 111.
  • 5Xu Xiaowei, Yuruk N, Fang Zhidan, et al. SCAN: A Structural Clustering Algorithm for Networks[C]//Proc. of the t3th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA: [s. n.], 2007: 824-833.
  • 6Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Phys. Rev. E., 2004, 69(2): 113-127.
  • 7Tyler J R, Wilkinson D M, Huberman B A. Email as Spectroscopy: Automated Discovery of Community Structure Within Organizations[C]//Proc. of the 1st Int'l Conf. on Communities and Technologies. Amsterdam, Holland: [s. n.], 2003:81-96.
  • 8Radicchi F, Castellano C, Cecconi F, et al. Defining and Identifying Communities in Networks[C]//Proc. of the National Academy of Science of USA. Rome, Italy: [s. n.], 2004: 2658-2663.
  • 9Newman M E J. Fast Algorithm for Detecting Community Structure in Networks[J]. Phys. Rev. E., 2004, 69(6): 133-137.
  • 10Newman M E J. Detecting Community Structure in Network[J]. The European Physical Journal, 2004, 38(2): 321-330.

共引文献19

同被引文献19

  • 1赵鹏,耿焕同,蔡庆生,王清毅.一种基于加权复杂网络特征的K-means聚类算法[J].计算机技术与发展,2007,17(9):35-37. 被引量:16
  • 2Barabtsi A L, Albert R, Jeong H, et al.. Power-law distribution of the world wideweb [J]. Science, 2000,287 (5461): 2115a.
  • 3Palla G, Derenyi I, Farkas I, et al.. Uncovering the overlapping community structures of complex networks in nature andsoeiety [J]. Nature, 2005,435 (7043): 814-818.
  • 4Han Jia-Wei, Kamber M. Data mining: concepts and techniques [M]. 2nd ed. USA: Morgan Kaufmann Publishers Inc, 2001.
  • 5Ordonez C, Omiecinski E. Efficient disk-basedK-means clustering for relational databases [J]. IEEE Transactions on Knowledge and Data Engineering, 2004,16 (8): 909-921.
  • 6Ward J H. Hierarchical grouping to optimize an objective function [J]. Journal of American Statistical Association, 1963,58 (301): 236-244.
  • 7Milligan G W. An examination of the effect of six types of error perturbation on fifteen clustering algorithms [J]. Psychometrika, 1980,45 (3): 325-342.
  • 8Higgs R E, Bemis K G, Watson I A, et al.. Experimental designs forselecting molecules from large chemical databases [J]. Journal of Chemical Information and Computer Sciences, 1997,37 (5): 861-870.
  • 9Snarey M, Terrett N K, Willet P, et al.. Comparison of algorithms for dissimilarity-based compound selection [J]. Journal of Mol- ecular Graphics and Modeling, 1997,15 (6): 372-385.
  • 10Park H S, Jun C H. A simple and fast algorithm for K-means clustering [J]. Expert Systems with Applications, 2009,36 (2): 3336-3341.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部