期刊文献+

基于柔性神经树的蛋白质结构预测 被引量:2

Protein Structural Prediction Based on Flexible Neural Tree
下载PDF
导出
摘要 提出一种基于柔性神经树的蛋白质结构预测方法,将近似熵和蛋白质序列的疏水特性作为伪氨基酸组成的特征。对数据集中的每一条蛋白质进行特征提取。对于一个蛋白质样本,用一个27-D伪氨基酸组成作为其特征,伪氨基酸组成特征作为输入数据,柔性神经树作为预测工具,分类方法采用M-ary方法,数据集选用640数据集。仿真结果表明,该方法具有较好的优化性能,提高了预测的准确率。 This paper proposes a method of protein structural prediction classes based on flexible neural tree. The approximate entropy and hydrophobicity pattern of a protein sequence are used to characterize the Pseudo-Amino Acid(PseAA) components. It extracts features of protein in data set. For a given protein sequence sample, a 27-D PseAA composition is gen^rated as its descriptor. PseAA composition features as input data, the flexible neural tree is adopted as the prediction engine. A classification method named M-ary classifier is introduced. The 640 protein sequence is used as the dataset. Experimental result shows the method has better optimization of performance and improves the predictive accuracy rate.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第1期159-160,163,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60573065) 山东省自然科学基金资助项目(Y2007G33)
关键词 蛋白质结构分类 伪氨基酸组成 近似熵 疏水性 柔性神经树 protein structure classification Pseudo-Amino Acid(PseAA) composition approximate entropy hydrophobicity flexible neural tree
  • 相关文献

参考文献2

二级参考文献9

  • 1Hornik K M, Stinchcombe M, White H. Multilayer Feed Forward Networks Are Universal Approximators[J]. Neural Networks, 1989, 2(2): 359-366.
  • 2Qian Ning, Sejnowski T J. Predicting the Secondary Structure of Globular Proteins Using Neural Network Modals[J]. Journal of Molecular Biology, 1988, 202(4): 865-884.
  • 3Holley L H, Karplus M. Protein Secondary Structure Prediction with a Neural Network[J]. Proceedings of the National Academy of Sciences, 1989, 86(1): 152-156.
  • 4Xin Huang, Huang De-Shuang, Zhang Guang-Zheng, et al. Prediction of Protein Secondary Structure Using Improved Twolevel Neural Network Architecture[J]. Protein & Peptide Letter, 2005, 12(8): 805-811.
  • 5Kabsch W, Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen Bonded and Geometrical Features[J]. Biopolymers, 1983, 22(12): 2577-2637.
  • 6Zhu Hanxi, Yoshihara I, Yamamori K. Prediction of Protein Secondary Struclure by Multi-modal Neural Networks[C]//Proc. of International Joint Conference on Neural Networks. [S. 1.]: IEEE Press, 2002: 280-285.
  • 7Martin Schürmann,Erol Ba?ar. Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans[J] 1994,Biological Cybernetics(2):161~174
  • 8Dr Steven M. Pincus PhD,Igor M. Gladstone MD,Richard A. Ehrenkranz MD. A regularity statistic for medical data analysis[J] 1991,Journal of Clinical Monitoring(4):335~345
  • 9杨福生,廖旺才.近似熵:一种适用于短数据的复杂性度量[J].中国医疗器械杂志,1997,21(5):283-286. 被引量:86

共引文献91

同被引文献24

  • 1杨明静,张辉,葛霁光.心电图数据的非线性动力学研究[J].内蒙古民族大学学报(自然科学版),1998,13(1):83-85. 被引量:2
  • 2吴建宁,王珏.采用支持向量机评估老年人步态对称性的研究[J].西安交通大学学报,2007,41(8):995-999. 被引量:8
  • 3Davis D.快速准确解读十二导联心电图[M].李立志,史大可,译.北京:科学技术文献出版社,2004:156-159.
  • 4Novak P.Time-frequency Mapping of the QRS Complex inNormal Subjects and in Postmyocardial Infarction Patients[J].Journal of Electrocadial,1994,27(1):48-49.
  • 5Xue Qiuzhen,Hu Yuhen,Tompkins W.Neural-network-basedAdaptive Matched Filtering For QRS Detection[J].IEEE Trans.onBiomedical Engineering,1992,39(4):317-329.
  • 6Sun P,Wu Q H,Weindling A M.An Improved MorphologicalApproach to Background Normalization of ECG Signals[J].IEEETrans.on Biomedical Engineering,2003,50(1):117-121.
  • 7Vapnik V.The Nature of Statistical Learning Theory[M].NewYork,USA:Springer-verlag,1995.
  • 8Huang N E,Long S R,Shen Z,et al.the Empirical ModeDecomposition and the Hilbert Spectrum for Nonlinear andNonstationary Time Series Analysis[J].Proceedings of the RoyalSociety,1998,454(1971):903-905.
  • 9Pincus S M.Approximate Entropy as a Measure of SystemComplexity[J].Proceedings of the National Academy of Sciencesof the United States of America,1991,88(10):2297-2301.
  • 10Zheng X, Li C, Wang J. An information - theoretic approach to the prediction of protein structural class~ J]. J. Comput. Chem. , 2010,31(6): 1201 -1206.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部