期刊文献+

多层次SIFT特征在语义概念检测中的应用

Application of multiple-layer SIFT to semantic concept detection
下载PDF
导出
摘要 SIFT局部特征因良好的性能在图像和视频的语义概念检测中得到广泛应用。已经有很多学者对SIFT做了深入研究,并提出了PCA-SIFT,SURF,MSER等,但是在SIFT算法中,阶与阶之间采样率的变化对SIFT特征的影响关注很少。考察了SIFT算法中,阶与阶之间采用不同降采样率对SIFT特征差异性的基础上,提出了一种多层次的SIFT(ML-SIFT)算法。Caltech256和SceneClass13数据集上的实验表明,ML-SIFT相比于原始SIFT,其MAP的提高能够分别达到15.7%和5.1%。另外在Caltech256上,当采用不同比例的正负样本训练时,ML-SIFT算法具有较好的稳定性。同时,还将ML-SIFT算法、SIFT、SURF算法做了性能比较,SURF和SIFT算法的性能较接近,但是SIFT和SURF相对于ML-SIFT算法,则其性能较差。实验表明,ML-SIFT是有效的。 The Scale Invariant Feature Transform(SIFT) has been widely used in video concept detection.A lot of researches about SIFT have been dones,uch as PCA-SIFT,SURF and MESR.But there are few attentions about the influence of different down-sampling ratios to SIFT extraction.Based on the analysis of the influence of different down-sampling ratios to SIFT extraction,and a Multiple-Level SIFT(ML-SIFT) method for senmantic concept detection is proposed.Experiments on Caltech256 and Scene Class13 show that MAPs of ML-SIFT outperform MAPs of SIFT on Caltech256 and SceneClass13 by 15.7% and 5.1% respectively.In addition,when training the models using different ratios of positive and negative samples,the performances of ML-SIFT are stable.At the same time,the comparison of SIFT,SURF and ML-SIFT is given in the paper.From the experiments,the performances of SIFT and SURF are similar,but when comparing to ML-SIFT,their performances are worse than ML-SIFT.From above analysis,the ML-SIFT algorithm is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第2期1-4,18,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60772114 No.90920001)~~
关键词 尺度不变特征转换 支持向量机 多层次的尺度不变特征转换 概念检测 特征融合 Scale Invariant Feature Transform(SIFT) Support Vector Machine(SVM) Multiple-Level SIFT(ML-SIFT) semantic detection feature fusion
  • 相关文献

参考文献13

  • 1Mikolajczyk K.Scale and affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004,60 ( 1 ) : 63-86.
  • 2Mikolajczyk K, Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (10) : 1615 - 1630.
  • 3Burghouts G J, Geusebroek J M.Performance evaluation of local color invariants[J].Computer Vision and Image Understanding, 2009,113( 1 ) :48-62.
  • 4Lowe D G.Distinctive image features from scale-invariant interest points[J].Intemational Journal of Computer Vision, 2004,60 (2) : 91-110.
  • 5Ke Y, Sukthankar R.PCA-SIFT: A more distinctive representation for local image descriptors[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004 ( 2 ) : 506-513.
  • 6Bay H,Ess A, Tuytelaars T, et al.Speeded-Up Robust Features (SURF) [J].Computer Vision and Image Understanding, 2008,110 (3) :404-417.
  • 7Csurka G.Visual categorization with bags of keYpoints[C]//ECCV Workshop on Statistical Learning in Computer Vision,2004:1-22.
  • 8Zhang J,Marszaek M,Lazebnik S,et al.Local features and kernels for classification of texture and object categories[J].Intemational Journal of Computer Vision, 2007,73 (2) : 213-238.
  • 9Jiang Yugang,Ngo C W, Yang Jun.Towards optimal bag-of-features for object categorization and semantic video retrieval[C]//CIVR, 2007:494-501.
  • 10Yang Jun,Jiang Yugang,Hauptmarm A G,et al.Evaluating bag of-visual-words representations in scene classification[C]//International Multimedia Conference,MM'07,2007:197-206.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部