期刊文献+

蚁群化学聚类在工程项目风险预测中的应用研究 被引量:2

Application of AntClust algorithm in projects risk forecasting
下载PDF
导出
摘要 工程项目风险预测是一个非常重要的问题,项目经理都很关心,但是至今仍然没有一种项目风险预测方法得到学者们公认。尝试将蚁群化学聚类算法用于这一问题,并通过一个算例来说明整个过程,结果显示预测效果良好。针对此问题将蚁群化学聚类算法与SVM进行了比较,表明了与SVM相比蚁群化学聚类算法具有简单易操作的特性。 Project risk prediction is a very important issue,project managers very concern about it.But there is not a method accepted by most of the scholar until today.This paper tries to use AntClust algorithm to resolve this problem and through a numerical example to explain the whole process,the result of the indicating is good.It finds out that compared with SVM the AntClust algorithm has the characteristics of simple operation.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第2期239-241,共3页 Computer Engineering and Applications
关键词 蚁群化学聚类 支持向量机 风险预测 AntClust Support Vector Machine(SVM) risk forecast
  • 相关文献

参考文献7

二级参考文献32

共引文献49

同被引文献33

  • 1王寓辰,张金隆,丛国栋.基于粗糙集的IT项目风险评价方法研究[J].工业工程与管理,2006,11(2):87-91. 被引量:9
  • 2张超,马存宝,许家栋.基于灰色马尔可夫SCGM(1,1)_C模型的空难人数预测[J].系统工程理论与实践,2006,26(5):135-139. 被引量:25
  • 3李高扬,刘明广,吴育华.工程项目风险预测模型[J].统计与决策,2006,22(22):143-144. 被引量:10
  • 4雷辉 邓彦龙等.基于支持向量机的工程项目风险预测.北方经济,2006,.
  • 5Cahit Perkgoz, Amir Azaron, Hideki Katagiri, Kosuke Kato, Masatoshi Sakawa. A multi-objective lead time control problem in multi-stage assembly systems using genetic algorithms[J]. European Journal of Operational Research, 2007, (180) : 292-308.
  • 6Stefan Kraupl, Christian Wieckert. Economic evaluation of the solar carbothermic reduction of ZnO by using a single sensitivity analysis and a Monte-Carlo risk analysis[J]. Energy, 2007, (32) : 1134-1147.
  • 7Siu Kui Au, Zhi-Hua Wang, Siu-Ming Lo. Compartment fire risk analysis by advanced Monte Carlo simulation[ J]. Engineer- ing Structures, 2007, (29) :2381-2390.
  • 8Nieto-Morote A, Ruz-Vila F. A fuzzy approach to construction project risk assessment[ J]. International Journal of Project Management, 2011, (29): 220-231.
  • 9Alejandro Balbas, Raquel Balbas, Silvia Mayoral. Portfolio choice and optimal hedging with general risk functions: a simplex- like algorithm [ J]. European Journal of Operational Research, 2009, (192). 603- 620.
  • 10M. De Beule, E. Maes, O. De Winter, W. Vanlaere, R. Van Impe. Artificial neural networks and risk stratification: a promising combination[J]. Mathematical and Comouter Modelllng. 2007. 46. (1 - 2) : 88-94.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部