期刊文献+

过氧化物酶体增殖物激活受体γ2在脂肪干细胞脂向分化过程中的表达 被引量:1

Expression Profiling of Peroxisome Proliferation Activate Receptor γ2 and Phosphorylation During Adipogenic Differentiation of Adipose-derived Stem Cells
原文传递
导出
摘要 目的观察转录因子过氧化物酶体增殖物激活受体γ2(peroxisome proliferation activate receptorγ2,PPARγ2)及其磷酸化形式在脂肪干细胞脂向分化过程中的表达情况,为研究脂肪发育的分子机制提供新线索。方法组织块贴壁法培养脂肪干细胞,采用条件培养基(含有α-改良型、10%胎牛血清、10-6mol/L地塞米松磷酸钠、10-5mol/L胰岛素、0.2mmol/L吲哚美辛和0.5mmol/L3-异丁基-1-甲基黄嘌呤)对第3代细胞进行脂向分化诱导,RT-PCR、Western blot、免疫荧光技术检测在诱导的第0d、1d、3d、5d、7d、9dPPARγ2非磷酸化及其磷酸化形式的表达情况。结果随着细胞脂向分化时间的延长,PPARγ2非磷酸化及其磷酸化形式的基因和蛋白表达量都明显增加。结论 PPARγ2是脂肪分化的关键调节者,推测PPARγ2可能通过自身的磷酸化来促进脂肪干细胞的脂向分化。 Objective To investigate PPARγ2 expression and phosphorylation involved in adipogenic differentiations of Adipose-derived Stem Cells(ASCs) with an aim to reveal the possible mechanisms of adipose development.Methods ASCs were obtained from the inguinal fat pads of GFP(green fluorescent protein) mice.The primary cells were cultured in histiocytic attachment cultivation.Adipogenic differentiation of the third generation of ASCs was induced with the conditional medium(α-MEM medium supplemented with 100 mL/L fetal bovine serum,10-6 mol/L dexamethasone,10-5 mol/L insulin,0.2 mmol/L indomethacin,and 0.5 mmol/L 3-isobutyl-1-methylxanthine).The levels of PPARγ2 mRNA and the PPARγ2 expression and phosphorylation at day 0,1,3,5,7,and 9 of induction were detected using RT-PCR,fluorescence-immunocytochemistry and western blot,respectively.Results The expression of PPARγ2 and phosphorylation were significantly up-regulated during adipogenic differentiation of ASCs.Conclusion PPARγ2 is the key regulator of adipose development.The regulation of PPARγ2 phosphorylation may promote adipogenic differentiation of ASCs.
出处 《四川大学学报(医学版)》 CAS CSCD 北大核心 2011年第1期10-14,共5页 Journal of Sichuan University(Medical Sciences)
基金 教育部博士点基金(20070610064) 国家自然科学基金(批准号30973348)资助
关键词 脂肪干细胞 过氧化物酶体增殖物激活受体γ2 磷酸化 脂肪分化 Adipose-derived stem cells PPARγ2 Phosphorylation Adipogenic differentiation
  • 引文网络
  • 相关文献

参考文献22

  • 1Lin SD, Wang KH, Kao AP. Engineered adipose tissue of predefined shape and dimensions from human adipose-derived mesenehymal stem cells. Tissue Eng, 2008 , 14(5) : 571-583.
  • 2Gomillion CT, Burg KJ. Stem cells and adipose tissue engineering. Biomaterials, 2006 ; 27( 36) : 6052-6063.
  • 3Flynn L, Prestwich GD, Semple JL, et al. Adipose tissue engineering with naturally derived seaffolds and adipose-derived stem cells. Biomaterials, 2007 ; 28 (26) .- 3834-3842.
  • 4Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs. Pharmacol Res, 2005;51 (2) : 85-94.
  • 5Alaynick WA. Nuclear receptors, mitochondria, and lipid metabolism. Mitochondrion, 2008 , 8 (4) : 329-337.
  • 6Steger DJ, Grant GR, Schupp M, et al. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev,2010;24(10) :1035-1044.
  • 7Arck P, Toth B, Pestka A, et al. Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biolreprod, 2010 ~83(2) : 168-176.
  • 8Won Park K, Waki H, Choi SP, et al. The small molecule phenamil is a modulator of adipoeyte differentiation and PPARγ expression. J Lipid Res, 2010 ; 51 (9) : 2775-2784.
  • 9Hilber K. Skeletal myocyte plasticity: basis for improved therapeutic potential? Curr Opin Pharmacol, 2008; 8 (3) : 327- 332.
  • 10Rosen ED, Hsu GH, Wang X, et al, C/EBPalpha induces adipogenesis through PPAR-gamma: a unified pathway. Genes Dev,2002,16(1):22-26.

同被引文献1

引证文献1

二级引证文献5

相关主题

;
使用帮助 返回顶部