期刊文献+

胡杨SCL7基因及其启动子片段的克隆与分析 被引量:21

Cloning and analysis of SCL7 gene from Populus euphratica
下载PDF
导出
摘要 根据拟南芥SCL7基因序列,以杨树基因组数据库为背景克隆得到了胡杨胁迫诱导基因SCL7全长及其启动子片段,所得基因命名为PeSCL7。序列分析表明:该基因的开放阅读框1767bp,编码588个氨基酸,该基因不含内含子。同源性比对发现该基因属于GRAS/SCL蛋白家族中SCL4/7分支;半定量RT-PCR结果显示,PeSCL7的表达受到多种逆境胁迫的诱导,且当胁迫处理3h时表达量达到最大值;对器官表达特异性进行分析,发现PeSCL7在胡杨的根、茎、叶中均有表达。克隆得到的胡杨PeSCL7启动子序列长968bp,包含可能与干旱胁迫、病害胁迫等应答元件。 To characterize the function of SCL7 in Populus euphratica, we cloned the full-length PeSCL7 gene and promoter region based on the AtSCL7 sequence of Arabidopsis and the Populus database. DNA sequence analysis showed that the PeSCL7 gene contained an open reading frame of 1 767 bp long without intron and encoded a 588 amino acid polypeptide. Similarity analysis showed that it belonged to the SCL4/7 branch of GRAS/SCL family. RT-PCR analysis revealed that the PeSCL7 could be induced by various stresses and the expression reached a maximum after 3 hrs of induction. PeSCL7 was detected in leaves, stems and roots in P. euphratiea via the analysis on the organ-specific expression. The PeSCL7 promoter sequence, about 968 bp in length, contained many stress-responsive cis-acting elements, i. e. , ABRE, MYB and WRKY core sequences. The results indicate that the PeSCL7 gene may play a significant role in stress responses of P. euphratica.
出处 《北京林业大学学报》 CAS CSCD 北大核心 2011年第1期1-10,共10页 Journal of Beijing Forestry University
基金 国家自然科学基金项目(30730077 30972339 31070597) "948"国家林业局引进项目(2007-4-01) "十一五"国家科技支撑计划项目(2006BAD03A01)
关键词 胡杨 GRAS/SCL 序列分析 表达分析 Populus euphratica GRAS/SCL sequence analysis expression analysis
  • 相关文献

参考文献31

  • 1SILVERSTONE A L, CIAMPAGLIO C N, SUN T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway [ J ]. Plant Cell, 1998, 10:155-169.
  • 2HELARIUTTA Y, FUKAKI H, WYSOCKA-DILLER J, et al. The SH OR T-R O OT gene controls radial patterning of the Arabidopsis root through radial signaling [ J]. Cell, 2000, 101 : 555 -567.
  • 3TIAN C, WAN P, SUN S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis [ J]. Plant Molecular Biology, 2004, 54: 519-532.
  • 4LEE M H, KIM B, SONG S K, et al. Large-scale analysis of the GRAS gene family in Arabidopsis thaliana [ J]. Plant Mol Biol, 2008, 67: 659-670.
  • 5BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytocrome A signal transduction [J]. Genes Development, 2000, 14: 1269-1278.
  • 6TORRES-GALEA P, HUANG L F, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochromedependent red light signaling, but can also modulate phytochrome A responses [J]. Mol Genet Genomics, 2006, 276: 13-30.
  • 7FODE B, SIEMSEN T, THUROW C, et al. The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress inducible promoters [J]. The Plant Cell, 2008, 20: 3122-3135.
  • 8GALLAGHER K L, PAQUETTE A J, NAKAJIMA K, et al. Mechanisms regulating SHORT-ROOT intercellular movement [J]. CurrBiol, 2004, 14: 1847-1851.
  • 9郭华军,焦远年,邸超,姚冬霞,张盖华,郑雪,刘岚,张群莲,郭蔼光,苏震.拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索[J].植物学报,2009,44(3):290-299. 被引量:31
  • 10BOLLE C. The role GRAS proteins in plant signal transduction and development [J]. Planta, 2004, 218: 683-692.

二级参考文献69

  • 1Balazadeh S, Riano-Pachon DM, Mueller-Roeber B (2008). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol (Stuttg) 10(Suppl 1 ), 63-75.
  • 2Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009). NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37, D885-D890.
  • 3Bolle C (2004). The role of GRAS proteins in plant signal transduction and development. Planta 218,683-692.
  • 4Bolle C, Koncz C, Chua NH (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev 14, 1269-1278.
  • 5Braam J (2005). In touch: plant responses to mechanical stimuli. New Phyto1165, 373-389.
  • 6Brazma A, Kapushesky M, Parkinson H, Sarkans U, Shojatalab M (2006). Data storage and analysis in ArrayExpress. Methods Enzymol 411, 370-386.
  • 7Broun P (2004). Transcription factors as tools for metabolic engineering in plants. Curt Opin P/ant Bio/ 7, 202-209.
  • 8Chen W, Provart N J, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chert X, Lain S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to envi- ronmental stresses. Plant Cell 14. 559-574.
  • 9Chen WJ, Zhu T (2004). Networks of transcription factors with roles in environmental stress response. Trends Plant Sci 9, 591-596.
  • 10Chen Y, Yang X, He K, Liu M, Li J, Gao Z, l.in Z, Zhang Y, Wang X, Qiu X, Shen Y, Zhang L, Deng X, Luo J, Deng XW, Chen Z, Gu H, Qu LJ (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60. 107-124.

共引文献30

同被引文献292

引证文献21

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部