期刊文献+

滑动轴承支承人字齿轮行星传动固有特性分析 被引量:13

Natural Characteristics Analysis on Herringbone Planetary Gear Trains with Slide Bearing Support
下载PDF
导出
摘要 考虑滑动轴承支承刚度不对称和耦合特性,建立计入内齿轮轴向振动的人字齿轮行星传动动力学模型。利用4个刚度系数描述行星轮滑动轴承支承油膜刚度。分析系统的自由振动特性,发现系统存在5种振动模式:中心轮扭转—轴向振动模式、内齿轮扭转—轴向振动模式、中心轮横向振动模式、内齿轮横向振动模式和行星轮振动模式。根据每种振动模式的振型特征,推导出5种模式固有特性的低阶计算公式。系统固有频率的分布范围比直齿、斜齿行星传动系统小。结果表明,油膜刚度不对称不会对振型特征产生影响,但是刚度耦合不对称时中心轮横向振动模式会发现显著变化:对应的二重固有频率变成两个不同的单重频率,振型呈现新特征。 A dynamic model of herringbone planetary gear trains is developed considering the axial vibration of two rings and asymmetry and interaction of oil film stiffness.Four stiffness coefficients are used to describe the oil film stiffness of slide bearings for planets' support.The free vibration characteristic is analyzed and the vibration modes are divided into five groups: rotational-axial vibration mode of center gears,rotational-axial vibration mode of rings,translational vibration mode of center gears,translational vibration mode of rings and planets vibration mode.For each class of mode,the reduced-order inherent characteristics formulas are derived according to the properties of each vibration mode.The distribution range of natural frequencies is smaller than those of spur and helical planetary gear trains.It reveals that although the asymmetry of oil film stiffness has little influence on the vibration modes properties,the significant changes of translational vibration mode of center gears will happen if there is asymmetry interaction of oil film stiffness: the corresponding twofold natural frequencies will turn into two different frequencies and new characteristics of vibration mode will appear.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第1期80-88,共9页 Journal of Mechanical Engineering
关键词 人字齿轮行星传动 滑动轴承 油膜刚度不对称和耦合 固有特性 Herringbone planetary gear trains Slide bearing Asymmetric and interaction of oil film stiffness Natural characteristics
  • 相关文献

参考文献16

  • 1KAHRAMAN A. Natural modes of planetary gear trains [J].J. SoundVib., 1994, 173(1): 125-130.
  • 2LIN J, PARKER R G. Analytical characterization of the unique properties of planetary gear free vibration[J]. Trans. ASME J. Vib. Acoust., 1999, 121(7): 316-321.
  • 3LIN J, PARKER R G. Structured vibration characteristics of planetary gears with unequally spaced planets[J]. J. Sound Vib., 2000, 233(5): 921-928.
  • 4PARKER R G, AGASHE V, VIJAYAKAR S M. Dynamic response of a planetary gear system using a finite element/contact mechanics model[J]. Trans. ASME J. Mech. Design, 2000, 122(3): 304-310.
  • 5宋轶民,许伟东,张策,王世宇.2K-H行星传动的修正扭转模型建立与固有特性分析[J].机械工程学报,2006,42(5):16-21. 被引量:42
  • 6KAHRAMAN A. Planetary gear train dynamics[J]. Trans. ASME J. Mech. Design, 1994, 16: 713-720.
  • 7杨通强,宋轶民,张策,王世宇.斜齿行星齿轮系统自由振动特性分析[J].机械工程学报,2005,41(7):50-55. 被引量:39
  • 8ERITENEL T, PARKER R G Modal properties of three-dimensional helical planetary gears[J]. J. Sound Vib., 2009, 325(1-2): 397-420.
  • 9WU Xionghua, PARKER R G Modal properties of planetary gears with an elastic continuum ring gear[J]. Trans. ASMEJ. Appl. Mech., 2008, 75: 031014-1-12.
  • 10KIRACAFE D R. PARKER R G. Structured vibration modes of general compound planetary gear systems[J]. Trans. ASME J. Vib. Acoust., 2007, 129: 1-16.

二级参考文献29

  • 1Theodossiades S, Natsiavas S. Nonlinear dynamics of gear pair systems with periodic stiffness and backlash[J]. Journal of Sound and Vibration,2000,229(2):287-310.
  • 2JIA Shengxiang, Howard I. Comparison of localized spelling and crack damage from dynamic modeling of spur gear vibrations[J]. Mechanical Systems and Signal Processing, 2006,20 :332-349.
  • 3LIN J, Parker R G. Planetary gear parametric instability caused by mesh stiffness variation[J]. Journal of Sound and Vibration, 2002,249 : 129- 145.
  • 4Kiracofe D R, Parker R G. Structured vibration modes of general compound planetary gear systems[J].Journal of Vibration and Acoustics,2007,129(1) : 1-16.
  • 5Umezawa K, Deflection and moments due to a concentrated load on a rack-shaped cantilever plate with finite width for gears[J]. Bulletin of JSME, 1972,15(79) : 116-130.
  • 6Umezawa K. The meshing test on helical gear under load transmissions: 1st report--The approximate formula for deflections of gear tooth[J]. Bulletin of JSME, 1972, 15(90):1632-1639.
  • 7Umezawa K. The meshing test on helical gear under load trartsmissions; 2nd report--The approximate formula for bending-moment distribution of gear tooth[J]. Bulletin of JSME, 1973,16(92):407-413.
  • 8Umezawa K. The meshing test on helical gear under load transmissions:3rd report The static behaviours of driven gear[J].Bulletin of JSME, 1974,17(112) : 1348-1355.
  • 9Umezawa K,Suzuki T, Houjoh H,et al. Vibrations of power transmission helical gears(the effect of contact ration on the vibration)[J]. Bulletin of JSME, 1985, 28 (238): 694 -700.
  • 10Umezawa K, Suzuki T, Sato T. Vibrations of power transmission helical gears(approximate equation of tooth stiffness)[J]. Bulletin of JSME,1986,29(251):1605-1611.

共引文献112

同被引文献114

引证文献13

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部