期刊文献+

ASP热轧过程X70管线钢的组织性能预测模拟 被引量:3

Prediction of microstructure and properties of X70 pipeline steel in process of ASP hot rolling
下载PDF
导出
摘要 采用物理冶金模型结合二维温度场对ASP(Angang Strip Production)热轧X70管线钢再结晶、相变等物理冶金过程进行了模拟,并结合BP神经网络对最终的力学性能进行了预测。研究表明,实验钢在层流冷却前的奥氏体晶粒尺寸为10~25μm,板带横断面奥氏体晶粒尺寸分布不均匀,心部的奥氏体晶粒尺寸比角部大15μm左右;在给定冷却速率的情况下采用前段冷却方式得到的铁素体分数比后段冷却方式大2%~5%;采用BP神经网络可以把伸长率预测结果相对误差标准差提高1.8%;Si含量0.2%~0.3%成为其对力学性能影响的转折点。 Based on physical metallurgy model and two-dimensional temperature field,recrystallization and phase transformation of X70 pipeline steel were simulated during ASP(Angang Strip Production) hot rolling.Mechanical properties were predicted by BP neural network.The results show that austenite grain size of the experimental steel is refined to 10-25 μm before laminar cooling section,but it is unevenly distributed along cross-section of strip.Austenite grain size at the core is about 15 μm larger than that at the corner.For a given cooling rate,fraction of ferrite obtained by preceding cooling method is 2%-5% greater than that by back-cooling method.The standard deviation of predicted elongation error can be raised by 1.8% by BP neural network.It is a critical turning point for the effect on mechanical properties of the steel when its Si content is 0.2% ~ 0.3%.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2011年第1期144-149,共6页 Transactions of Materials and Heat Treatment
基金 国家"十一五"科技支撑计划(2007BAE51B07) 国家重大基础研究发展规划项目(2006CB605208)
关键词 再结晶 相变 BP神经网络 模拟 预测 recrystallization phase transformation BP neural network simulation prediction
  • 相关文献

参考文献9

  • 1许云波,刘相华,王国栋,谢瑞萍,金永春.热轧中厚板组织-性能预测及软件开发[J].钢铁,2006,41(3):51-54. 被引量:6
  • 2曲锦波,王昭东,刘相华,王国栋,薛贵军,曹刚,陈奎凡,徐建国.HSLA钢板控轧控冷生产中组织性能的预测模型[J].钢铁,1999,34(1):35-38. 被引量:5
  • 3郑晖,王昭东,王国栋,刘相华,张丕军,刘孝荣.利用人工神经网络模型预测SS400热轧板带力学性能[J].钢铁,2002,37(7):37-40.5. 被引量:18
  • 4Koker R,Ahinkok N, Demir A. Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms[ J ]. Materials and Design ,2007,28: 616 -627.
  • 5Minami K, Siciliano F, Maccagno T M, et al. Mathematical modeling of mean flow stress during the hot strip roiling of Nb steels [ J ]. ISIJ International, 1996,36(12) : 1507 - 1515.
  • 6Hodgson P D, Gibbs R K. A Mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels [ J]. ISIJ International, 1992,32( 12 ) : 1329 - 1338.
  • 7Senuma T,Suehiro M, Yada H. Mathematical models for predicting microstructural evolution and mechanical properties of hot strips [ J]. ISU International, 1992,32 ( 3 ) : 423 - 432.
  • 8Militzer M ,Pandi R, Hawboh E B. Ferrite nucleation and growth during continuous cooling[ J]. Metallurgical and Materials Transactions A, 1996,27 (7) : 1547 -1556.
  • 9Garrett R P,Xu S,Lin J. A model for predicting austenite to bainite phase transformation in producing dual phase steels[ J]. International Journal of Machine Tools and Manufacture,2004,44 : 831 - 837.

二级参考文献20

  • 1王殿辉,刘振宇,王国栋,张强,姜洪生,王洪水.利用神经网络预测热轧板带力学性能[J].钢铁,1995,30(1):28-31. 被引量:27
  • 2王铁,陈进.BP 算法中学习率及形状因子对学习速度的综合影响[J].上海交通大学学报,1997,31(3):109-112. 被引量:17
  • 3王国栋 等.人工智能在轧钢中的应用与性能预报[J].钢铁,2000,35:25-25.
  • 4刘孝荣.利用神经网络预报气瓶钢的性能:硕士学位论文[M].沈阳:东北大学,1999..
  • 5刘振宇.C-Mn钢热轧板带组织性能预测模型的开发及在生产中的应用:博士学位论文[M].沈阳:东北大学,1995..
  • 6Hodgson P D,Gibbs R K.A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels[J].ISIJ International,1992,32(12):1329-1338.
  • 7Laasraoui A,Jonas J J.Prediction of Temperature Distribution,Flow Stress and Microstructure During the Multipass Hot Rolling of Steel Plate and Strip[J].ISIJ International,1991,31(1):95-105.
  • 8江坂一彬,肋田淳一,高桥学.材质予测·制御モデルの开发[J].制铁研究,1986,321:92.
  • 9Siciliano F J,Minami K,Jonas J J.Mathematical Modeling of the Mean Flow Stress,Fractional Softening and Grain Size During the Hot Strip Rolling of C-Mn Steels[J].ISIJ International,1996,36(12):1500-1506.
  • 10Cahn J W.The Kinetics of Grain Boundary Nucleated Reaction[J].Acta Metallurgica,1956,4:449.

共引文献25

同被引文献30

  • 1余驰斌,鲍思前,叶传龙,赵刚,张志红,张超,胡敏.铌钛微合金热连轧带钢冷却过程中组织演变及模型的研究[J].上海金属,2005,27(1):21-25. 被引量:7
  • 2裴新华,吴申庆,胡恒法.临界奥氏体区变形对Q235钢显微组织的影响[J].金属热处理,2005,30(2):44-47. 被引量:2
  • 3金蕾,徐洲,郑磊,高珊.490MPa级TMCP厚板钢热形变奥氏体连续冷却转变行为的研究[J].上海金属,2005,27(3):13-15. 被引量:3
  • 4张志宏.中国热轧宽带钢轧机及生产技术[M].北京:冶金工业出版社,2004(3).
  • 5王延薄.板带材生产原理与工艺[M].北京:冶金工业出版社,1995.
  • 6小指车夫(日).控制轧制控制冷却[M].李伏挑,译.北京:冶金工业出版社,2006.
  • 7Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metals Science, 1979, 13(3-4) : 187-194.
  • 8Galantucei L M, Tricarieo L. Thermo-mechanical simulation of a rolling process with an FEM approach [ J ]. J Mater Process Teehnol, 1999, 92/93: 494-501.
  • 9Sun C G, Park H D, Hwang S M. Prediction of thee dimensional strip temperature through the entire fishing mill in hot strip rolling by finite element method[J]. ISLJ International, 2002, 42: 629-635.
  • 10Komori K, Koumura K. Simulation of deformation and temperatuRe, in muhi-pass H-shape rolling [ J ]. Journal of Materials Processing Technology, 2000, 105: 24-31.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部