期刊文献+

基于最近边界向量的SVM增量学习算法 被引量:1

Incremental Learning Algorithm of Support Vector Machine Based on Nearest Border Vectors
原文传递
导出
摘要 为了减少求支持向量过程中二次规划的复杂度,利用训练样本集的几何信息,选出两类中离另一类最近的边界向量集合,它是样本中最有可能成为支持向量的一部分,用它代替原样本集进行训练.对新增样本,若存在违反KKT条件的样本,只对这部分新样本进行学习.同时找出原样本中可能转化为支持向量的非支持向量样本.基于分析结果,提出了一种新的基于最近边界向量的增量式支持向量机学习算法.对标准数据集的实验结果表明,算法是可行的,有效的. In order to reduce the time consumed in solving quadratic programming problems, a set of nearest border vectors were extracted from the training samples by using the geometric information in these samples.The original sample set was replaced by the obtained nearest border vector set in the process of training.The nearest border vector set is most likely to become the support vectors.For new samples,those was learned which do not satisfy Karush-Kuhn-Tucker(KKT) conditions.Besides support vectors,those was learned which maybe convet support vectors in the original samples.Based on the analysis results,a incremental learning algorithm of support vector machine(SVM) based on nearest border vectors is presented.The experimental results with the standard dataset indicate the effectiveness of the proposed algorithm.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第2期110-114,共5页 Mathematics in Practice and Theory
基金 河南科技大学博士科研启动基金 河南科技大学青年基金(2008QN205)
关键词 支持向量机 增量算法 数据挖掘 分类 support vector machine(SVM) incremental algorithm data mining classification
  • 相关文献

参考文献5

  • 1Burges C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 127-167.
  • 2VAPNIK V. Statistical Learning Theory[M]. New York: Springer Verlag, 1995.
  • 3Syed N A, Liu H, Sung K. Incremental learning with support vector machines[C]//In Proceedings of the Workshop on Support Vector Machines at the international Joint Conference on Artificial Intelligence (IJCAI-99),Stockholm, Sweden, 1999.
  • 4萧嵘,王继成,孙正兴,张福炎.一种SVM增量学习算法[J].南京大学学报(自然科学版),2002,38(2):152-157. 被引量:24
  • 5王晓丹,郑春颖,吴崇明,张宏达.一种新的SVM对等增量学习算法[J].计算机应用,2006,26(10):2440-2443. 被引量:21

二级参考文献13

  • 1滕月阳,唐焕文,张海霞.一种新的支持向量机增量学习算法[J].计算机工程与应用,2004,40(36):77-80. 被引量:7
  • 2BURGES CJC.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-167.
  • 3VAPNIK V.统计学习理论本质[M].北京:清华大学出版社,2000.
  • 4CAUWENBERGHS G,POGGIO T.Incremental and decremental support vector machine learning[J].Machine Learning,2001,44(13):4098-4151.
  • 5SYED N,LIU H,SUNG KK.Incremental learning with support vector machines[A].Proc.Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence (IJCAI-99)[C].Stockholm,Sweden,1999.
  • 6Vapnik V. The Nature of statistical learning theory. New York: Springer-Verlag,1995. 5-13.
  • 7Christopher J C B. A tutorial on support vector machines for pattern recognition. Knowledge Discovery Data Mining, 1998, 2(2): 235-244.
  • 8Vapnik V, Levin E, Cun Y Le. Measuring the VC-dimension of a learning machine. Neural Computation, 1994, 6(5): 851-876.
  • 9Vapnik V. Statistical learning theory. New York:Wiley, 1998. 21-22.
  • 10Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing. Mozer M, Jordan M, Petsche T. Advances in Neural Information Processing Systems 9. Cambridge: MIT Press, 1997: 281-287.

共引文献43

同被引文献6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部