期刊文献+

二阶算子矩阵代数中的全可导点Ⅱ

All-Derivable Point in 2×2 Operator Matrix Algebra
原文传递
导出
摘要 研究二阶算子矩阵代数中的全可导点.利用线性映射于算子矩阵代数运算,以及套代数理论的相关结果.给出并证明了E=[■](V是可逆算子)是二阶算子矩阵代数的关于强算子拓扑的全可导点,推广了相关文献的结果. It is the purpose studying all-derivable point in 2×2 operator matrix algebra. Using he operation of linear mapping and matrix algebra,and the related results of nest algebra theory,it is shown in this paper that E =[V00 00](V is an invertible operator) is an all-derivable point of the algebra of all 2×2 operator matrices for the strongly operator topology,the result of relaed articles is generalized.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第2期195-200,共6页 Mathematics in Practice and Theory
关键词 全可导点 二阶算子矩阵 可导线性映射 套代数 all-derivable point 2×2 operator matrices derivable linear mapping nest algebra
  • 相关文献

参考文献7

  • 1Zhu Jun, Xiong Changping. Derivable mappings at unit operator on nest algebras[J]. Linear Algebra and its Application, 2007, 422(2-3): 721-735.
  • 2王素芳,朱军.二阶算子矩阵代数中的全可导点[J].杭州电子科技大学学报(自然科学版),2007,27(3):95-98. 被引量:3
  • 3Zhu Jun and Xiong Chang-ping . All-derivable points of operator algebras[J]. Linear Algebra and its Application. 2007, 427(1): 1-5.
  • 4Jing Wu, Lu Shijie, Li Pengtong. Characterizations of derivations on some operator algebras[J]. Bull Austral Math Soc, 2002, 66 (2): 227-232.
  • 5Hadwin L B . Local multiplications on algebras spanned by idempotents[J]. Linear and Multilinear Algebra, 1994, 37: 259-263.
  • 6Erdos J A. Operator of finite rank in nest algebras [J]. J London Math Soc, 1968, 43: 391-397.
  • 7Kenneth R Davidson. Research Notes in Mathematics[M]. New York: Longman Scientific N: Technical. 1988: 36.

二级参考文献5

  • 1[1]Jing Wu,Lu Shijie,Li Pengtong.Characterizations of derivations on some operator algebras[J].Bull Austral Math Soc,2002,66 (2):227-232.
  • 2[2]Zhu Jun,Xiong Changping.Derivable mappings at unit operator on nest algebras[J].Linear Algebra and its Application,2007,422 (2-3):721-735.
  • 3[3]L B Hadwin.Local multiplications on algebras spanned by idempotents[J].Linear and Multilinear Algebra,1994,(37):259-263.
  • 4[4]J A Erdos.Operator of finite rank in nest algebras[J].J London Math Soc,1968,(43):391-397.
  • 5[5]Kenneth R Davidson.Research Notes in Mathematics[M].New York:Longman Scientific &Technical,1988:36.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部