摘要
研究二阶算子矩阵代数中的全可导点.利用线性映射于算子矩阵代数运算,以及套代数理论的相关结果.给出并证明了E=[■](V是可逆算子)是二阶算子矩阵代数的关于强算子拓扑的全可导点,推广了相关文献的结果.
It is the purpose studying all-derivable point in 2×2 operator matrix algebra. Using he operation of linear mapping and matrix algebra,and the related results of nest algebra theory,it is shown in this paper that E =[V00 00](V is an invertible operator) is an all-derivable point of the algebra of all 2×2 operator matrices for the strongly operator topology,the result of relaed articles is generalized.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第2期195-200,共6页
Mathematics in Practice and Theory
关键词
全可导点
二阶算子矩阵
可导线性映射
套代数
all-derivable point
2×2 operator matrices
derivable linear mapping
nest algebra