期刊文献+

基于梯度特征与彩色特征相融合的mean shift跟踪方法 被引量:3

Mean shift tracking algorithm based on gradient feature and color feature fusion
下载PDF
导出
摘要 针对mean shift跟踪方法中存在的光照变化不稳定问题,提出了基于梯度特征与彩色特征相融合的mean shift跟踪方法。首先分别提取目标的梯度特征和彩色特征,利用多尺度的相似度计算方法进行特征的匹配,然后通过最大化相似度对目标进行跟踪。通过物体和人体等运动目标的跟踪,验证了改进的跟踪算法在光照变化情况下的鲁棒性优于原有的算法,显著降低了跟踪位置误差。 A novel mean shift algorithm based on object tracking gradient feature and color image fusion is proposed for the illumination unstable problem in traditional mean shift method.Firstly,gradient features and color features of the target are extracted separately,the features are matched using multi-scale similarity calculation method.Then,the target can be tracked by maximizing the similarity.Experiments on the tracking of moving targets such as object and human demonstrate that the proposed algorithm has more robust than the original algorithm under the situation of illumination changes and reduces the tracking position error obviously.
出处 《微型机与应用》 2011年第3期35-38,共4页 Microcomputer & Its Applications
关键词 目标跟踪 mean SHIFT 梯度图像 多尺度相似度量 object tracking mean shift gradient image multi-scale similarity
  • 相关文献

参考文献9

  • 1COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25:564-577.
  • 2HAGER G D, BELHUMEUR P N. Efficient region tracking with parametric models of geometry and illumination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(10):1025-1039.
  • 3FREEDMAN D,TUREK M. Illumination-invariant tracking via graph cuts [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Sna Diego: IEEE Press, 2005:10-17.
  • 4YANG C J, DURAISWAMI R, DAVISL S. Efficient meanshift tracking via a new similarity measure [C]. Proceedings of IEEE Conference on Computer Vision and "Pattern Recognition. San Diego, USA: IEEE, 2005:176-183.
  • 5李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 6王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 7RUBNER Y, TOMASI C, GUIBAS L J. The earth mover's distance as a metric for image retrieval [J]. International Journal of Computer Vision, 2000, 40(2):99-121.
  • 8GRAUMAN K, DARRELL T. The pyramid match kernel: discriminative classification with sets of image features [C]. IEEE International Conference on Computer Vision. Beijing: IEEE Press, 2005: 1458-1465.
  • 9LI L Y, HUANG W M, GU I Y H, et al. Statistical modeling of complex backgrounds forforeground object detection[J]. IEEE Transactions on Image Processing, 2004, 13(11) : 1459-1472.

二级参考文献25

  • 1Wren C R,Azarbayejani A,Darrell T,Pentland A P.Pfinder:real-time tracking of the human body.IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):780~785
  • 2Birchfield S T.Elliptical head tracking using intensity gradients and color histograms.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,1998.232~237
  • 3Stauffer C,Grimson W E.Learning patterns of activity using real-time tracking.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747~757
  • 4Comaniciu D,Ramesh V,Meer P.Real-time tracking of non-rigid objects using mean shift.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2000.142~149
  • 5Collins R T.Mean-shift blob tracking through scale space.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2003.234~241
  • 6Birchfield S T,Rangarajan S.Spatiograms versus histograms for region-based tracking.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2005.1158~1163
  • 7Zhao Q,Tao H.Object tracking using color correlogram.In:Proceedings of IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.IEEE,2005.263~270
  • 8Yang C,Duraiswami R,Davis L.Efficient mean-shift tracking via a new similarity measure.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2005.176~183
  • 9Comaniciu D,Meer P.Mean shift:A robust approach toward feature space analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24:603~619
  • 10Test Image Sequences for Face Tracking by Stan Birchfield[Online],available:http://vision.stanford.edu/birch/head tracker/seq

共引文献105

同被引文献23

  • 1罗三定,陈海波.基于区域增长的自适应窗口立体匹配算法[J].中南大学学报(自然科学版),2005,36(6):1042-1047. 被引量:10
  • 2Klaus A. Segment-based Stereo Matching Using Belief Propagation and a Self-adapting Dissimilarity Measure [C]//Proc. of International Conference on Patter Recognition, 2006.
  • 3Orstmann S, Kanou Y, Ohya J, et al. Real-timeStereo by Using Dynamic Programming[C]//Proc. of IEEE Int' 1 Conference on Computer Vision and Pattern Recognition, ?004.
  • 4Comaniciu D,Ramesh V,and Meer P.Kernel-based objecttracking[J].IEEE Transactions on Pattern Analysis andMachine Intelligence,2003,25(5):564-577.
  • 5Jiang Z L,Li S F,and Gao D F.An adaptive mean shifttracking method using multiscale image[C].WaveletAnalysisand Pattern Recognition,Beijing,China,Nov.2-4,2007,Vol.3:1060-1066.
  • 6Han Ri-sheng,Jing Zhong-liang,et al..Kernel based visualtracking with scale invariant features[J].Chinese OpticsLetters,2008,6(3):168-171.
  • 7Comanuciu D and Meer P.Mean-Shift:a robust approachtoward feature space analysis[J].IEEE Transactions onPattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 8Comaniciu D.Nonparametric robust methods for computervision[D].[Ph D.dissertation],New Jersey:The StateUniversity of New Jersey,2000.
  • 9Bradski G R.Computer video face tracking for use in aperceptual user interface[EB/OL].http://developer.intel.com/technology/itj/q21998/pdf/camshift.pdf.
  • 10马东辉,朱斌,樊祥,任彪.基于粒子滤波的目标图像多特征融合跟踪方法[J].探测与控制学报,2009,31(4):39-43. 被引量:6

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部